
(

(*

(RM NIMBUS

RM LOGO

(

Discrepancies in the RM Logo Reference Manual
Reference Section

a r c l , a r c r
The angle of arc is limited to + 360 degrees, not mod 360 as with
the other "radial" commands,

b l o a d
If you bload the same extension more than once, identical sets of
routines will be loaded, as shown by the b l o a d e d command,

b u i l d
It is possible to use build to edit an existing procedure, but not
possible to use e d i t to build a non-existant procedure,

c o l o u r , s e t c , b g , s e t b g
When real numbers are supplied to s e t c or s e t b g , only the
integer part (mod 16) is used,

f e n c e
The fence is one-way: if a turtle is outside the screen area before
f e n c e is issued, it is possible for the turtle to enter the screen
again. The fence then becomes active,

j o i n
The maximum length of any single Logo word is 63 characters. If
you use j o i n , or any similar command, to create a word of more
than 63 characters, a word of exactly 63 characters will be
produced,

p e n n o r m a l , p e n r e v e r s e
These primitives do NOT lower the pen as stated in the manual.

/ power n u m b e r l number2
If numberl <= 0 and number2 is not an integer, an error is
generated,

r e a d f i l e d
When using this primitive, if any special Logo character is found
in the line that is being read, the line is truncated from the point
of the character. The next r e a d f i l e d command starts with the
next line in the file,

s e n s e
If a turtle hits the edge of the screen, with sense on, Logo does
NOT perform a throw ' t o U c h t u r t l e . It does a t h r o w
• f e n c e ,

t o u c h , p o i n t
These two primitives only work within the screen area.

1

Addenda

Other Chapters

Page 7.3

Line 5 of the procedure check.key should be:
i f : b u t t o n = »b [backward 10]

Page 10.5-6 J

' " " " " " " ' ")
The variable : o b j e c t s (used in the procedure s c a n . l i s t)
should be the variable : names.

Page 11.7

There is an error in bracketing in the example
delete.records, from. file. Lines 3, 6 and 7 should be:

unless infile: filename [say [cannot
find] <+ :filename escape]

unless closefile:filename [say j
cannot close] <+ :filename escape]

unless erasefile:filename [say
[cannot erase] <+ :filename \
escape]

Page 16.7)

The interrupt mentioned on the fourth line from the bottom
should be OD1 hex and NOT OC1 hex as stated.

)

\

)

1

(

(

(

(

(

(

(

• -
•
• -

RMLOGO

>

PN14394

RM Logo
PN 14394

Copyright ©1985, Research Machines Ltd.

All rights reserved. Although customers may make copies of this
manual for their own use, you may make no other form of copy of any
part of it without our written permission.

MS-DOS is a registered trademark of Microsoft Corporation.

Because our policy is to improve our products and services continually,
we may make changes without notice. We have tried to keep the
information in this manual completely accurate, but we cannot be held
responsible for the consequences of any errors or omissions.

Customers comments are of great value to us in improving our computer
systems, publications and services. If you would like to make any
comments, please use the reply-paid form at the back of the manual.

Authors: Cathy M. Hand and Barry Morrell.

Editor: Nicola Bourdillon.

Illustrations by Jane Hannah and Inkwell Studios.

Typeset by direct transfer from Research Machines Network to Linotron 202
at Oxford Publishing Services, Oxford.

Printed by The Hazell Press, Wembley.

Research Machines Limited, Mill Street, Oxford OX2 OBW.

Freface

Preface

RM Logo is a full and versatile language.
This book, RM Logo, and the accompanying
'Beginning RM Logo' provide:

• an introduction to the RM Logo language

• an introduction to using RM Logo on Nimbus

• a language reference

• a quick reference card

The aim is for you to understand Logo quickly and easily
and to use the extra features provided in RM Logo.

Beginning RM Logo by Hilary Shuard and Fred Daly,
is available from Research Machines, PN 14393. It
gives an introduction to RM Logo.

This book, RM Logo, is divided into two sections and
an index:

• a Concepts section

• a Logo primitives section

• index

The Concepts section consists of sixteen chapters which
progress quickly from starting with Logo to introducing
the special features of RM Logo. Many example programs
are included for you to try out, and are given in the
following format:

J
The 1: prompt

Anything following the 1: is to be typed in by
you.

Long Lines >
Some Logo lines are longer than the width of these
pages. Any indented Logo lines in this book are a
continuation of the previous line, to be typed in
without pressing the <ENTER> key. If the
line is longer than the screen width, it
appears on the next screen line.

Procedures
Logo procedures are shown with a bui Ld command, a
blank line and then the text as it appears in the edit
window. You will need to type in all of the text
except for the first line (which results from the
bui Ld command).

The first chapter includes <ENTER> at the end of the
Logo lines to remind you to press the <ENTER> key.
Later chapters leave it out.

)
The Primitives section is the reference part of the book.
It lists all of the Logo primitives in alphabetical order,
the special Logo characters, keywords and signals. Some
examples are included to show how the words are used in
programs.

The index is at the back of the book but it covers only
the Concepts section. As the primitives are listed in an
alphabetical order, they are easy to find without the
additional task of looking in an index.

The Logo examples in the book have been tested but we
cannot guarantee a perfect performance when you use them.

(

(

Contents

(

(

Part One Concepts

, Chapter 1: Getting Started
RM Logo 1
Your Logo Disk and Guides 1

/ Starting Up 1
On a Network Nimbus 1
On a Standalone Nimbus 1

(Leaving Logo 1
Loading, Running and Saving Files 1
Introducing Logo 1

r Logo Primitives 1
Procedures 1
Abbreviating Primitives 1

/ Words and Lists 1
Names 1
Numbers and Arithmetic 1
Special Characters 1

Setting up a Logo Microworld 1

Chapter 2: Graphics
Introducing RM Logo Graphics 2
Turtle Graphics 2
Directing and Moving the Turtle 2
Changing the Turtle Shape 2
Using Colour 2

XOR Plotting 2
Absolute Graphics 2
Summary of Primitives 2

Contents

Chapter 3: More On Procedures
Building and Scrapping 3.1

Listing Those Available 3.1
Using Inputs to a Procedure 3.2
Getting Results from Procedures 3.3
Renaming Procedures 3.4
Procedures as Lists 3.5
Summary of Primitives 3.6

Chapter 4: Using The Editor
Function Keys for Editing 4.2
Editing with Numeric Keys 4.3
Editing a List 4.5
Leaving an Edit 4.5
Errors in your Editing 4.6
Summary of Primitives 4.6

Chapter 5: Changing The Flow Of Control
Repetition 5.2
Using Conditionals 5.3
Recursion 5.5
Throwing and Catching Control 5.9
Summary of Primitives 5.10

Chapter 6: Managing Your Workspace
Manipulating the Contents of your Workspace 6.1
Preserving your Work on Disk 6.2
Replaying a Sequence of Commands 6.3
File Maintenance Operations 6.4
Summary of Primitives 6.5

Chapter 7: Simple Input/Output
Printing on the Screen 7.1
Input from the Keyboard 7.3
Summary of Primitives 7.4

IV

<

(

(

Contents

Chapter 8: Arithmetic
Positive and Negative Numbers 8.1
Arithmetic Operators 8.2
Random Numbers 8.3
Summary of Primitives 8.3

Chapter 9: Words And Lists
Words 9.1

, Lists 9.3
List Pointers 9.5
Other Operations on Words and Lists 9.6

/ Summary of Primitives 9.7

Chapter 10: Organising Information
/ Introduction 10.1

A Simple Database 10.3
Retrieving Information 10.4
Building a more Sophisticated Database 10.6
Reasoning by Inference 10.10
Summary of Primitives 10.12

^ Chapter 11: File Handling
Disks and Files 11.1

, Creating a Simple File 11.3
Reading a Simple File 11.5
Changing Data in a File 11.6
A Few Last Words on Files 11.9

File Names 11.10
Using Temporary Files 11.10
Sorting out Disk Problems 11.12

(

(

(

Contents

Chapter 12: Handling Keyboard Errors and Debugging
Error Handling 12.1

Handling Keyboard Mistakes 12.1
Handling Errors in your Program 12.3

Debugging your Programs 12.3
Using walk 12.5
Using t r a c e 12.6
Using bug 12.8
Symbolic Dumps 12.9

Summary of Primitives 12.9

Chapter 13: Parallel Processing
Introduction 13.1
Problems with Parallel Processing 13.3

Mutual Exclusion 13.3
Synchronization 13.4
Problems with Local Variables 13.6
Example of Parallel Processing 13.8

Summary of Primitives 13.8

Chapter 14: Using Multiple Turtles
Drawing Complex Shapes Simultaneously 14.1
Drawing Different Shapes Simultaneously 14.3
Creating Moving Pictures 14.4
Summary of Primitives 14.9

Chapter 15: Setting Up A Logo Micro world
Preserving the Microworld 15.4
Summary of Primitives 15.6

VI

Chapter 16: Extensions To Logo
Introduction 16.1
Floor Turtles 16.1
Loading a Ready-made Turtle Driver 16.2
Loading Ready-made Extensions 16.3
Preparing to Write a Turtle Driver or Extension 16.3
Writing a Floor Turtle Driver 16.4
Writing your own Extensions 16.5

Format of Extension files 16.6
Reading Inputs 16.7
Returning Results 16.8
Returning Lists 16.8
Error Exit 16.8

Part Two Reference

Index

t

'

(

<

Chapter 1
Getting Started

<

Getting Started

RM Logo

<

(

(

(

Logo is a computer language that originated in the 1960s
and has kept growing in popularity. It originated as a
language reflecting a philosophy of learning: beginners
start with little understanding but, through learning,
become increasingly more sophisticated. In turn, Logo has
become a full language, offering a complete range of
activities but retaining its one original founding
principle: it is easy to use.

Logo can be used without any knowledge of the internal
workings of the computer, and without any other
specialized knowledge. You can start to make things
happen with instructions such as forward and backward.
Such words carry their every day meaning into the Logo
language and help to make it simple to use.

Turtle graphics are sometimes believed to be the whole of
Logo. The graphics are certainly important, generating
much of the enthusiasm for Logo. The turtle is a marker
on screen which allows you to draw pictures — but the
opportunity exists for you to add a floor turtle (a
mechanical device which moves around on the floor in
response to Logo instructions). RM Logo is also able to
let you use up to eight turtles on screen at the same
time, to change the shape of the turtle (to a bicycle for
example) and to let turtles sense other events happening
on screen.

Logo's ease of use is especially beneficial in an
educational environment because Logo doesn't ask for
specialized knowledge or experience. For example, turtle
graphics lets you draw pictures on screen without needing

1.1

Getting Started

to know about coordinate geometry. However, you are
likely to learn without realizing it as you explore Logo!
For example, you might learn by experiment that the turtle
takes 360 steps to completely turn around. In finding out
this, the idea of 360 degrees in a complete turn is also
suggested.

Logo instructions are carried out immediately after you
type them in. Interest is maintained by actually seeing
things happen after typing an instruction. If you want a
set of instructions to be carried out together then you
can put them into a procedure. One of the features of
Logo is the way one procedure can call another, and
RM Logo will let you run a number of procedures in
parallel.

RM Logo is a versatile language and the aim of this book
is to let you find and use the full features of the
language.

Your RM Logo Disk and Guides

You will have received a disk called the RM Logo Disk.

(As with any such distribution disk, the contents must be
copied to another 'working' disk which is used. Then, if
your working disk is lost or damaged, another copy can be
made from the master.)

This disk contains all the files needed to use RM Logo and
to demonstrate its capabilities.

The files that RM Logo needs to work are:

LOGO.EXE — the Logo interpreter
PWORDl.OVR — the Logo editor
START.LGC — the standard Logo environment
PROWORD.EXE — to use the Logo editor outside of Log

(

<

(

<

I

(

(

(

(

<

(

(

Getting Started

These are accompanied on the disk by some demonstration
files. These have the file extension . def

An explanation of how to load and run the demonstration
files follows in the section, 'Loading, Running and Saving
Files'. Demonstration files are treated just like files
or procedures that you have created yourself.

As well as this guide which briefly introduces RM Logo and
includes a reference section of the language, an
introductory book is available from Research Machines:
Beginning RM Logo by Hilary Shuard and Fred Daly,
PN 14393.

Starting Up

On a Network Nimbus

If you have a Network Nimbus, it is assumed that
everything has been prepared by the Network Manager for
you to use RM Logo and that you can join the following
instructions where they specify you type:

logo

O n a Standalone Nimbus

Your Nimbus should be switched on and displaying either
the initial Welcome screen or a drive prompt (such as A>).

• When Nimbus is displaying the welcome screen and a
message Welcome—Please supp ly an o p e r a t i n g system
insert the Logo working disk into a drive.
Either amend the date and time or press <ENTER>
twice to keep the date and time shown.

The drive prompt of the drive holding the
Logo working disk appears on the screen.

J

1.3

Getting Started

• If you start with a drive prompt on the screen, make
sure that your Logo disk is either in that drive or
can be accessed from it.

Following the screen prompt, type:

Logo

and press the <ENTER> key.

You are now in RM Logo!

The screen should be clear except for 1: in the top
lefthand corner. The prompt 1: indicates that Logo is
waiting for you to type a command at the keyboard. When
Logo replies to you on screen, the 1: prompt doesn't
appear. In the examples in this book, use the prompt to
distinguish between Logo's responses and the instructions
you type in. You type in everything following the 1 : .

The position of the 1: prompt in the top left corner
indicates that you are in text mode: you cannot draw
graphics in this mode. However, by typing:

1: clear-screen <ENTER>

the screen changes to display a triangle shape at the
centre. This triangle is called the turtle and indicates
you are in graphics mode. All but five lines at the
bottom of the screen are used for drawing with the turtle.
The five lines are reserved for commands (text).

1.4

(
Getting Started

/
Text characters appearing in graphics mode are double the
width of text characters typed in text mode or through the

/ Logo editor.

(Leaving Logo

When you want to leave Logo, type:

1: e x i t < E N T E R >

or

1: goodbye <ENTER>

This will return the screen prompt which existed before
you typed Logo to enter into the Logo system. However,

t before leaving Logo, remember to save your procedures that
you might want to use again.

If you only want to get out of a running program or
procedure, press the <ESC> key. The message Stopped!
appears on screen.

Loading, Running and Saving Files

Files are 'containers' for your programs or procedures.
Each of the demonstration files for example contains a
program to demonstrate features of RM Logo. A list of
these files can be seen on screen by typing:

1 : demofiLes

Each can be loaded typing the filename preceded by
Load ' For example, load the demonstration file
cage.def by typing:

1 : Load ' cage.de f
1 :

1.5

Getting Started

Logo returns the prompt 1: to show the file has been
successfully loaded. If the file can't be loaded then an
error message comes on screen to indicate why.

The contents of the demonstration files are run by typing the
filename. These are the same as the name so file
cage.def can be run by typing:

1 : cage

The above file has already been saved but if you create
programs or procedures that you want to keep, use the
save command to transfer them to disk.

Introducing Logo

Logo Primitives

textscreen and clear-screen are words which
do a specific action in Logo. Such words are known as
primitives and are built into Logo. When you type a
primitive as a command, you need to press the <ENTER>
key to make it take effect.

Primitives introduced or connected with material in
following chapters, are listed at the end of each chapter.
If they are listed, but not included in the chapter, then
they will be explained in the reference section at the end
of this guide. Primitives are important because they act
as basic building blocks for more complicated commands.

Some primitives need no other information to perform their
actions. For example:

clearscreen

1.6

(

<

(

(

•

(

(

Getting Started

<

Others need inputs which you can change to get different
effects. For example:

f o rward 50

This moves the turtle forward by a fifty steps.

backward 27

This moves the turtle backwards by a twenty-seven steps.

Lef t 90

This turns the turtle left by a ninety degrees.

r i g h t 43

This turns the turtle right by a forty-three degrees.

Notice there is a space between the primitive and its
input. Try omitting this and see what happens. Logo will
warn you with an error message and you can then retype the
correct line.

(

Procedures

(

(

(

(

(

You can build new Logo commands from any commands that
Logo already knows. These new commands are called
procedures and they are created using the bui Ld primitive.
For example, the following procedure draws a square.

Type:

1 : buiLd 'square <ENTER>

1.7

Getting Started

The screen changes to the following format:

FKEYE

normal

shift

alt

MOV

00
E0
DEL

00
0D
CMD

SB

<LR>

char

word

line

AUDT

line

page

text

COMMANDS *

Swap case

Ins marker

Go to mark

[menu

of

more]

square

This is the edit window and RM Logo is now in edit mode.
The cursor is positioned under the first letter of the
procedure name: in this case square.

Now you can type in the
rest of the procedure square.

repeat 4 [r i g h t 90 forward 50]

If you make a typing error then remove it by
pressing the <BACKSPACE> key. This rubs out the
character to the left of the cursor. (More
editing commands are explained in Chapter 4,
Using the Editor.

Getting Started

The complete edit window containing the procedure squa re
looks like this:

FKEYS

normal

shift

alt

MOV

00
EH
DEL

00
OD
CMD

SB

-4LR*-

char

word

line

AUDT

line

page

text

COMMANDS*

Swap case

Ins marker

Go to mark

[menu

of

more]

square
repeat 4 [r i g h t 90 forward 50]

Leave edit mode and return to graphics mode by pressing
the escape key marked <ESC>. Now you can run the procedure
by typing:

1: square<ENTER>

If you want to change the contents of squa re you can do so
using e d i t ' s qua re or bui Ld ' squa re . The contents will be
displayed and you can change them using the keys described
in Chapter 3.

Try creating another procedure to draw a triangle. The
bui Ld command will take you into the edit window.

1: buiLd ' tr iangLe<ENTER>

The following text is the body of the procedure and,
except for the first line, will need to be typed in by
you.

1.9

Getting Started

t r iang Le
repeat 3 [forward 80 l e f t 120]<ESC>

So far procedures have been made using primitives.
However, procedures can also be built up of other
procedures. For example, procedures squa re and
t r i ang Le can be used to create another procedure
house:

1: bui Ld 'house

house
square
r i gh t 90
t r i ang le

Produce the picture by typing:

1: house

All the following examples in this guide are shown with
the bui Id command, a blank line, and then the text
as it appears in the edit window.

Abbreviating Primitives

Logo allows you to type short forms of some primitives.
For example, instead of forward you could type f d.
The short forms of primitives are given under the
description of each primitive in the reference part of
this book.

Logo also allows you to type a number of primitives on the
same line, if you wish. If you keep on typing when you
reach the end of the line, text will continue onto the
next line.

1.10

Getting Started

For example, instead of typing the following:

1
1
1
1
1
1

forward 50
Left 120
forward 50
Left 120
forward 50
Left 120

you could type:

1
1
1
1
1
1

fd 50
Lt 120
fd 50
Lt 120
fd 50
Lt 120

or

1 : f d 50 Lt 120 f d 50 Lt 120 f d 50 Lt 120

You can also link commands together with and, for example:

1 : fo rward 50 and r i g h t 45

This is mainly used to make Logo more readable.

Words and Lists

Logo words are similar to words of spoken languages in
that they consist of characters. For example:

• c a t
'computers
'Train
•2and3

1.11

Getting Started

Notice that they all start with a single quotation mark
but there isn't a terminating mark. This tells Logo that
the string which follows is a word. You can use the
character ' on its own to show a word with no characters
in it (called the empty word).

You can join words to form longer words and split them up
to form shorter ones. These operations are covered in
detail in Chapter 9.

A list consists of zero or more elements surrounded by
square brackets. Each element can be a Logo object: a
number, a word or another list. For example:

[cats dogs b i rds]
CCa bl [c d]]
[a b CaCc]] d]
c :
You can handle lists in the same way as words: they can
be printed, broken into smaller lists or joined to make
longer ones. In fact, some primitives will operate upon
words and lists. For example:

1: say teats dogs b i rds]
cats dogs birds

1 : say 'cats
cats

Lists are described in more detail in Chapter 9.

Names

Logo names can consist of letters, numbers and punctuation
characters. Logo primitives (listed in the reference
section of this book) can be written in upper or lower
case, but those you define yourself need to be in lower
case. Upper case characters slow Logo down a little. All
the Logo examples in this book are given in lower case.

1.12

(

(

(

(

(

(

(

(

(

Getting Started

Use punctuation characters and underlines to make names
more readable. Spaces cannot be used within a name
because they are used to separate different items such as
procedure names and inputs.

equi L a t e r a l . t r i a n g l e
i s o s c e l e s ^ t r i a n g l e

You have already come across one method of assigning
names: when defining a procedure, you name both the
procedure and its inputs. You can also name constant and
variable items by using the make primitive. For example,
the following command gives the name ang le a value of 90:

1 : make 'ang le 90

Here, the make primitive creates a 'box' and gives it
the name ang Ie. It then puts the value 90 into the
box. If you now want to look at the contents of the box,
you prefix its name with : (dots), as shown below:

1 : say :ang le
90

You can also look at the contents of a named object by
using the va lue primitive. For example:

1 : make ' ang le 90
1 : say va lue ' ang le
90

This may seem more long-winded than using dots and in
cases like the one above it is. However, va lue allows
you to do things you can't do with dots. For example:

1 : make 'bathroom [ba th s i nk towel
rubber .duck]

1 : say va lue f i r s t [bathroom k i t c h e n bedroom]
bath s i n k towe l rubber .duck

1.13

Getting Started
1

Numbers and Arithmetic

Logo numbers consist of a string of one or more digits and
may contain a decimal point. You must not precede them
with a quotation mark because they are not words.

You can perform arithmetic upon numbers and two types of
operators are available.

Infix operators go between the items and include
+ (add), — (subtract), / (divide) and * (multiply). For
example:

1 : say 10 * 13
130

Prefix operators go before the items and include
a d d , d i v i d e , m u l t i p l y and remainder.
For example:

1 : say add 10 13
23

Other functions available include cos, p i , s i n
and tan .

Special Characters

This section describes characters which have a special
meaning in Logo, for example:

• : []

)

1

*
If you want to use any of these special characters as
ordinary characters in text, you must prefix each one with
the special character (\) whenever it is used. The escape
character will be printed by pr i nt but not by say.

'

1.14

(

(

(

(

(

(

Getting Started

Quotation mark or '

This indicates that what follows is to be used as a
word or a name. It is not the name of a procedure so it
can't be run!

Dots o r :

This refers to the contents of a variable.

Square brackets or []

These are used to surround a list. Note that words in the
list do not necessarily start with a quotation mark.

Backslash or \

(

(

(

(

(

(

This is the special character indicating that the
subsequent character is to be treated as an ordinary text
character and not a special character. For example:

1 : say 'CathyVs.shoes

will show as Cathy' s .shoes on the screen. Try it without
the backslash to see the difference.

The sequence \\ prints as\.

\ can also be used to give the corresponding character of
subsequent hexadecimal digits. For example:

1: say '\01 <ENTER>

produces a face character.

Round brackets, parentheses or ()

(

(

These are used to group items of an expression into the
order in which you want Logo to evaluate them.

1.15

Getting Started)

Comment o r ;

Comments in a program are preceded by a semicolon. For
example:

i f :x = 0 Estop] ;Finished

Setting Up A Logo Microworld \

)

1.16

You may want to alter or reduce the facilities that Logo
offers, or extend them to produce a Logo learning
environment, or microworld. You can:

Redefine some of the primitives to change their effect.
For example, you could redefine f orwa rd so that
forward 10 moves the turtle by 100 steps

• Treat some of your procedures as 'primitives' which
cannot be edited by users

• Rename primitives for use with procedures from other
dialects of Logo

• Create a news file whose contents are displayed
whenever someone starts up the system

The actions needed are described in Chapter 15.

)

)

(

(

(

Graphics

Chapter 2
Graphics

Introducing RM Logo Graphics

(

(

(

(

(

(

(

Logo's immediate appeal is due largely to its graphics.
RM Logo is a very powerful version of Logo that lets you
use the fast and powerful graphic facilities of the
RM Nimbus.

Logo is an excellent language for learning and exploring
programming because it gives you a symbol to think with;
the turtle shows you where you are and which way you are
going. You can make the turtle turn, move in straight
lines or arcs; drawing, not drawing or erasing as it goes.
You can define the shape of your turtle, make it print its
shape and make it invisible.

The first section of this chapter describes Logo's Turtle
Graphics, including most of the actions possible with one
turtle. Multiple turtles are explained in Chapter 13.

This is followed by an explanation of using colours. You
can choose the colours of the turtle, of the lines it
draws and of the background it draws on.

As well as turtle graphics, where your instructions move
the turtle from its present position, Logo has absolute
graphics, where the screen is defined as a set of
coordinates which your instructions draw to. The final
section of this chapter describes this use.

(

2.1

Graphics
\

Turtle Graphics !

Type c Learscreen to go into graphics mode. The
graphics screen has a turtle shape in the centre and the
bottom five lines are reserved for text. To clear
pictures from the graphics area, use the command c Lean.
Text can be wiped off the writing area at the bottom of
the screen using c Leantext.

i

The area that the turtle can be seen to move in is the
grid shown above. You can put a boundary around this area
using fence which will stop the turtle going out of the
area. When fence is not applied, the turtle can move out
of the area and out of sight.

Directing and Moving the Turtle

The simplest and probably the most used commands to move
the turtle are forward and backward. The turtle
moves either forwards or backwards in the direction it is
pointing.

The turtle has a pen which can be lowered to mark wherever
the turtle moves (drop) or raised so that the turtle moves
without tracing its direction (Lift) . The pen is usually
down when you enter Logo.

Following the command c Learscreen, the turtle points
"north" or up towards the top of the screen. The
direction that the turtle points is called its drawing
heading and measured in clockwise degrees from "north".

2.2

)

Graphics

Typing:

1: r i gh t 90

turns the turtle to face "east".

Left, r i g h t andse th are all commands that
change the direction that the turtle is pointing.
Explanations of how to use them are covered in the
reference section.

You can set the direction for the turtle to move without
changing the direction it is pointing. The direction the
turtle moves in is known as the movement heading and can
be changed using s e td i r. The turtle's initial speed, like
the movement heading, is preset to zero degrees. Use
s e t speed to make it move. For example:

cs
se td i r 90
setspeed 20

the turtle will move to the "east" while pointing "north".

Whenever you want the turtle to stop moving, reset it's
speed to 0. To return it to the centre of the graphics
screen, use the c e n t r e primitive.

2.3

Graphics
\

Changing the Turtle Shape

The turtle has appeared until now as an arrow shape but
this can be changed. A new shape can be created using
def i neshape and taken up by the turtle using the
command s e t s h a p e , or by using the procedure esh .def
given on your RM Logo Disk. The following is an example
of the first method.

You might find it easiest to draw out the shape on paper
before you actually use def i neshape. The following
steps show you how to define a house as a turtle shape.

• Draw the shape out on a grid. Your shape should be
drawn a sensible size to move around the screen. The
house has been drawn on a grid 4 x 5 units

)

)

i

)

• Fill in the cartesian coordinates for each point.

)

2.4

(

(

(

Graphics

• Write out the coordinates as a list. This list
follows the name of the shape, house.

The whole command can be completed now.

1: defineshape [house [-8-12] [8-12] [8 -4] [0 4]
[- 8 - 4] [- 8 - 1 2]]

The last coordinate pair are the same as the first so that
the shape is 'closed'.

To change the current turtle's shape to the new one, type:

setshape 'house

To get back to the original turtle shape, type:

t e l l 1
vanish
t e l l 1

The t e l l 1 command shows you are directing turtle number
one. You can have up to eight turtles on the screen (see
Chapter 14), numbered 1 to 8.

You can also choose to make the turtle disappear from view
us ingh ide tur t l e .Br ing it back into view with
showturt le .

Using Colour

RM Logo allows you control over the:

turtle colour
pen colour
background colour

(but the border colour surrounding the Logo screen remains
the same).

2.5

You can change and check the colours using the primitives:

bg

colour

pc

setbg

setc

setpc

Returns background colour

Returns current turtle colour

Returns pen colour

Sets background colour

Sets current turtle colour

Sets pen colour

The table below shows the numbers associated with colours:
Number Colour

0 black
1 dark.blue
2 dark.red
3 purple
4 dark.green
5 dark.cyan
6 brown
7 light.grey
8 dark.grey
9 light.blue

10 light.red
11 magenta
12 light.green
13 cyan
14 yellow
15 white

The colours you can get on your monitor depend on the
monitor you are using. The full range of colours listed
above can be seen on a monitor capable of generating all
sixteen colours. You might otherwise be using a colour
monitor which displays eight of the colours, or a
monochrome monitor giving sixteen shades of grey.

Graphics

(

(

You can use colour numbers in commands. For example:

1: cs
1: setbg 1

will change the background colour to dark blue.

(

You may find it easier to remember the colours by name
rather than by number. The procedure co Lours. Lgp
on your RM Logo disk allows you to use the names of the
colours as well as the number. For example:

1: cs
1: setbg dark.blue

will change the background colour to dark blue.

If you try se tbg cyan and se tbg magenta you
will see that cyan is greenish blue and magenta is
crimson.

XOR Plotting

There are two ways of drawing on the screen:

• destructive overdrawing the default

• non-destructive overdrawing (XOR or exclusive OR
plotting)

"With destructive overdrawing, you draw over anything that
is already there, and the colour of the new drawing
replaces the covered part of the old. Non-destructive
overdrawing merges the colours of the new and old.

If you want to plot colour in the non-destructive mode,
you do so by giving the penreverse command. For example:

1: setpc 14
1: penreverse

2.7

Graphics

gives non-destructive plotting in yellow. You can return
to the default over plotting by using pennorma L.

The turtle shape is always drawn in non-destructive mode.

It is also worth pointing out the colour drawn by the
turtle's pen depends on the background colour. A black
background will guarantee an accurate turtle colour.

Absolute Graphics

The movement primitives forward, back . Left
and r i g h t all move the turtle relative to its current
position. If you wish, you can move the turtle relative
to the system of coordinates shown below by using the
primitives s e t x , s e t y andse tpos .

y
93
I

-159 ^ 0 158

-y
- 9 4

andse tpos C—159 —94] moves the turtle to the bottom
left corner of the screen (without drawing a line).

Logo allows you to draw a line between any two points on
the screen using Li ne, and to draw coloured points on the
screen using s e t po i n t .

2.8

(

(

(
Summary of Primitives

arcL
Draws left hand arc

a r c r
Draws right hand arc

bg
/ Returns background colour

c e n t r e , c e n t e r , (c t)
Moves turtle to home position

c lean (cL)
Clears graphics area of screen

cLeantext
Clears text area of screen

c l e a r s c r e e n (cs)
Clears screen

colour (co lour)
Returns turtle colour

def ineshape (dsh)
Defines turtle shape as list

Graphics

di r •

drop

eraser

fence

fenceq

fill
Fills area of screen

forward (fd)
Moves turtle forwards

heading
Returns turtles drawing heading

h i d e t u r t l e (h t)
Hides turtle shape

l a b e l
Prints text in graphics area

Returns direction of movement

Drops turtle's pen

Erases lines over which it passes

Prevents turtle going off screen

Tests if f ence has been used

2.9

Graphics

2.10

> Lef t (L t)
Turns turtle to left

Lift \
Lifts turtle's pen

Line
Draws line on screen \

near
Tells you if turtle is close to another turtle

nofence \
Allows turtle to move off screen

nosense
Cancels sense command \

pc
Returns current pen colour

penreverse (px) \
Lowers the turtle's pen to draw in XOR mode

po in t
Returns position of current point on screen

revereseq
Tells you if turtle's pen is reversed

r i g h t (r t) \
Turns turtle to right

rubber
Erases lines which turtle passes over \

sense
Turtle senses presence of another turtle or change in
background colour \

se tbg
Changes background colour

s e t c
Changes turtle colour

s e t d i r
Changes turtle's direction of movement

se th
Changes turtle's direction of drawing

se tpc
Changes pen colour

s e t p o i n t
Sets a coloured dot on screen

)

)

)

)

Graphics

se tpos
Changes turtle's position to [x y]

s e t shape
Changes current turtle shape

se t speed
Gives turtle a constant speed

se tx
Moves turtle in x direction

s e t y
Moves turtle in y direction

shape
Returns current turtle shape

shapedef
Returns shape as a list

shapes
Returns list of shapes defined

s h o w t u r t l e (s t)
Makes turtle visible

speed
Returns turtle's current speed

stamp
Stamps a shape on screen

t e l l
Addresses subsequent commands to named turtle(s)

t e x t s c r e e n (t s)
Reserves screen for text

t o ld
Returns name of current turtle

touch
Returns the background colour under the pen

towards
Returns heading and distance to named point

t u r t les
Returns list of active turtles

upq
Returns ' t rue if pen is up

vani sh
Removes turtle(s) from list of active turtles

wrap
Wraps turtle movement around screen ? 11

Graphics

2.12

wrapq
Tells you if wrap has been selected

xcor
Returns turtle's x coordinate

ycor
Returns turtle's y coordinate

(
Procedures

(
Chapter 3
More On Procedures

Procedures allow you to approach programming problems in a
structured and logical way. You can break a complex
problem into its smaller components, and tackle the
smaller problems by building procedures to solve each one
separately. Use of procedures encourages a structured
approach that often leads to efficient, elegant programs
that are easy to check and easy to develop.

Some languages, including Pascal and Logo, allow you to
store your procedures independently, and so to build up a
library of the procedures you want to use repeatedly.

In Logo, procedures will run without a calling program so
you can test them as you build them. You can edit and
delete them, or you can treat them exactly like the
primitives. It may be helpful to think of building a
procedure as "teaching Logo a new command".

Building and Scrapping

You build procedures using the bui Ld primitive described
in Chapter 1. If you want to, you can delete them from
the workspace by using scrap.

Listing Available Procedures

You can get a list of all the procedures you have copied
or created in the workspace by using t i t Les.

1: say t i t l e s
square t r i ang le polyspi

(

3.1

Procedures

Using Inputs to a Procedure

Primitives such as forward and Left use inputs to know
what precise action to take: for example, forward 55 for
the turtle to go forwards 55 units. Your procedures can
have inputs too.

Change the procedure square in Chapter 1 by typing:

1 : e d i t 'square

so that it looks like:

square ' s i d e
repeat 4 [L e f t 90 fo rward : s i d e]

This allows you to change the size of the square each time
the procedure is used. Here is the screen picture after
running first square 50 and then square 75.

?. :

This is what happens. :si de in the first line creates a
'box' called si de. When you run the procedure, the value
following the procedure name goes into the 'box'. The
value in the box is used whenever :s i de appears in the
procedure. So, when you type in:

square 50

3.2

Procedures

(Logo takes the number 50 and puts it into the box. It
then uses the contents of the box as the value for the

/ primitive forward in the line
repeat 4 Cleft 90 forward : s i de] .

(The colon : is called dots in Logo and it indicates the
contents of something (in this case the box called si de).

t If you want, you can have a number of inputs to a
procedure. For example:

1: bui Id ' rectangle

rectangle "s idel 's ide2
repeat 2 [forward :side1 r i gh t 90

forward :side2 r igh t 90]

This procedure would need two inputs to run. For
example:

1: rectangle 30 60

If you only give one input by mistake, an appropriate
error message will appear on the screen, rec tang le
will take the first two inputs if you give more than two
numbers, and appear to ignore the others.

Getting Results from Procedures

Your procedures can also return values after
doing tests or calculations. They do this using the
r e s u l t primitive. For example, the following procedure
calculates the square of a number and returns the result:

v
1: build 'number.square

number.square 'no
result :no * :no

3.3

Procedures

The full stop is used in numbe r . squa re to make
it more readable. You can't use a space for this purpose
here; if you did, number would be used as the procedure
name.

When you give this procedure a number as an input, it
outputs the square of the number and you can print this
using say:

1 : say number.square 13
169

Renaming Procedures

If you want to call a procedure by another name, use the
primitive rename.

rename 'po lygon " s i x . s i d e d . f i g u r e

This completely erases the name po Lygon and the procedure
takes the new name s i x . s i d e d . f i g u r e .

However you can rename a procedure during an edit by
replacing the old name with the new name. This gives you
two copies of the procedure: one as it was before the
edit with the old name and text; one with the new name
and edited text.

If, instead, you want to give the procedure an alternative
name and still let it be known by its original name, you
can use a L i a s. For example:

a l i a s ' s i x . s i d e d . f i g u r e 'hexagon

will let you use either of the names hexagon and
s i x . s i d e d . f i g u r e for the previous procedure.
When you change the contents of one, you change the
contents of the other too.

3.4

< Procedures

Procedures as Lists

/ Sometimes, you might want to manipulate a procedure in the
form of a list, def i ne allows you to create a procedure
in this way and t e x t lets you list it in the same form.

/ For example:

1: define [[square.number 'no] [result :no * :no]]
1: say square.number 12
144

1: print text 'square.number
[[square.number 'no] [result :no * :no]]

The input to def i ne consists of a list of lists. The
first list holds the procedure's title line. The rest
consist of each procedure line in the form of a list.

def i ne is most useful when you want to write procedures
which define other procedures. It isn't worth using
def i ne to build a procedure from command level: if the
procedure is a big one, you are likely to make mistakes by
mismatching the square brackets. Use bui Id instead for
the procedures 'built' from commands.

An example of the use of def i ne follows. It
effectively runs a procedure as you are defining it.

1: bui Id create

create 'name

def ine p u t f i r s t :name g e t . l i n e read l i s t

1 : bu i Id get . l ine

get .L ine ' t ex t
i f : t ex t = [q u i t] [r e s u l t []]
run : tex t
result putfirst :text get. line readlist

3.5

Procedures
)

When you now use c r e a t e , each Logo line that you type in
will be executed and then stored. When you type qui t , the
procedure will be created. You cannot have inputs to the
new procedure in this version of c r e a t e . For example:

1: create 'new.house
t r i ang le
r igh t 90
square
qu i t

Summary of Primitives

a l ias

bu i ld

bury

Renames procedure but remembers old name

Invokes the editor

define

edit

edi t list

edlist

expose

rename

scrap

titles

text

Buries procedures so that they cannot be edited,
listed, saved, renamed or deleted

Defines procedure in the form of a list

Invokes the editor \

Invokes the editor to edit a list and returns the list
in the form it was given i

Invokes the editor to edit a list and returns the list
as a list of lists

Unburies procedures

Renames a procedure

Destroys a procedure

Returns list of (unburied) procedures

Returns definition of a procedure as a list

)

3.6

The Editor

Chapter 4
Using the Editor

The RM Logo editor is used to create and change your
procedures. It can be called from either text or graphics
mode. If you want to know more about any of the keys
mentioned in this chapter, please refer to your Nimbus
Owners Handbook which gives a full description of the
Nimbus keyboard.

When you use bui Ld to create a procedure, the editor
screen is displayed and it looks like this:

FKEYS

normal

shift

alt

MOV

00
00

DEL

00
on
CMD

SB

•«LR*

char

word

line

AUDT

line

page

text

COMMANDS*

Swap case

Ins marker

Go to mark

[menu

of

more]

When you type in the lines of your procedure, they will
appear in the central "window".

4.1

The Editor

Function Keys For Editing

The keys on the left of the keyboard marked <F1> to <F10>
are function keys and are used to edit text in the window.

They are displayed on the left side of the edit window,
not with the numbers <F1> to <F10>, but showing their use:

cursor movement
(left right up and down)

MOV

00
00

text deletion
(left right up and down)

DEL

00

special command keys
CMD

SB

Text at the top of the window tells you the effect of
pressing one of these function keys either on its own or
while pressing the <SHIFT> or <ALT> keys.

FKEYS

normal

shift

alt

-«LR*

char

word

line

AUDT

line

page

text

COMMANDS*

Swap case

Ins marker

Go to mark

[menu

of

morel

4.2

(

(

The Editor

The top row
(identified by the word "normal" at its left hand

/ side) shows the effect of pressing a function key on
its own.

/ For example, pressing <F1> moves the cursor one
character to the left and pressing <F9> changes the
case of the character underlined by the cursor.

The middle row
(identified by the word "shift") shows the effect of

/ holding down the <SHIFT> key and then pressing a
function key.

r For example, using <SHIFT> and <F1> moves the
cursor one word to the left. Pressing <SHIFT>
and <F6> deletes one word to the right of the cursor.

The bottom row
(identified by the word "alt") shows the effect of

/ holding down the <ALT> key and then pressing the
appropriate function key.

/ For example, using <ALT> and <F1 > moves the
cursor to the start of the current line. <ALT>
and <F6> deletes text on the line to the right of the

/ cursor.

The best way to become familiar with these keys is to type
in a simple procedure and then try using them. Once you
have practised and have a basic understanding of their
use, you will find the screen text a useful quick

/ reference.

Editing with Numeric Keys

The numeric keypad on the right of the keyboard can also
be used in editing. It is quite easy to anticipate what
happens but here is a table of the keys and their actions:

4.3

The Editor

4.4

Editing Action

Move cursor one character to left

Move cursor one character to right

Move cursor up one line

Move cursor down one line

Move cursor to beginning of text

Move cursor to end of text

Move cursor up one page

Move cursor down one page

Delete character under cursor

Delete character to left of cursor

Key

m
FZ

\
8
t

"x

c

2
\

/

i

Iro
9

PS UP

-

c

3
PGDN

7

\

-

C
DEL

7

:>

-

ED
)

The Editor

Editing a List

One helpful feature of the RM Logo editor is the way it can
be used to edit lists. If you want to edit a list, use
the primitive ed L i s t and follow it with the name or
actual list. The entries in the list will then be
shown in the editor window in the following way:

1 : make ' n e w l i s t e d l i s t Cab cd Ce f g]]

FKEYS

normal

shift

alt

MOV

00
00

DEL

00
on
CMD

SB

•4LR*

char

word

line

AUDY

line

page

text

COMMANDS *

Swap case

Ins marker

Go to mark

[menu

of

more]

ab
cd
e f g

After amending the list press <ESC> to leave the editor.
The list can be printed on screen in its amended form. For
example:

1: p r i n t :newl is t
[[ab] Ccd] [e f g h]]

Leaving an Edit

You can get out of the editor and preserve your procedure
by pressing <ESC>. Alternatively, you can leave the editor
and destroy what you typed by pressing <F10> and then < A > .
The procedure or list will still exist as it was before
the editing.

4.5

The Editor

Errors In Your Editing

Certain errors (notably unmatched brackets) have to be
corrected before you can exit from the editor using <ESC>.
In this case, an error message will appear on the bottom
line of the screen and you won't be able to leave the
editor (other than by using the <F10> and < A > keys) until
you find the error and correct it.

It is also worth pointing out that you mustn't break up
Logo instructions that need to be on one line. For
example, the b r a n c h . . . case command must be on one line.
Long lines are shown in this book by indenting the
continuation lines. For example:

branch :x>0 [r esu l t ' p o s i t i v e] case :x=0
[r esu l t ' zero] defaul t [r esu l t 'negat ive]

should be typed in on one line without a carriage return:

If you keep typing into the editor window, text moves out
of the window on the left to allow you to see that you are
continuing to type on the same line.

Summary of Primitives

bu i ld
Invokes the editor

e d i t
Invokes the editor

e d i t l i s t
Invokes the editor to edit a list and returns the list
in the form it was given

e d l i s t
Invokes the editor to edit a list and returns the list
as a list of lists.

4.6

Flow of control

Chapter 5
Changing the Flow of Control

The simplest programs "start at the beginning, go to the
end and then stop" — their instructions are carried out
one after the other and they may be said to have a linear
flow of control. For example, the following simple program
gives the eight steps necessary to draw a square.

1 : fo rward 50
1 : Lef t 90
1 : fo rward 50
1 : Lef t 90
1 : fo rward 50
1 : Lef t 90

There are three structures which enable you to write
complex programs without having to itemise every step.

Logo allows you to write just one instruction, telling the
computer to do the repetition, either for a given number
of times, or forever.

You can tell the computer to carry out instructions only
if certain conditions apply, and to carry out other
instructions if not.

You can also build procedures that call themselves,
probably using conditions to test whether they should
stop. This is called recursion.

These three ways of determining the order that
instructions are obeyed enable you to write powerful
programs quite simply. You define the logical sequence
of instructions and then tell the computer to do the work.

5.1

Flow of control

Repetition

You can repeat a list of commands a number of times using
the repea t primitive. For example:

1: bu i ld 'square

square

repeat 4 [forward 50 Left 90]

1 : bu i ld 'spinning.squares

spinning.squares
repeat 6 Cleft 60 square]
The repea t lines tell Logo to obey the list of primitives
inside the [] brackets 4 and 6 times, respectively.

If you want to, you may separate commands by using and.
For example, you could change spi nni ng. squares
to the following:

1 : ed i t 'spinning.squares

spinning.squares
repeat 6 Cleft 60 and square]

Using and also gives you fuller and more helpful error
messages if you make a mistake.

If you aren't sure how many times you want a list of
commands to be repeated, you can use fo reve r :

1: bui Id "polygon

polygon "angle 's ide
forever Cforward :side l e f t :angle]

5.2

Flow of control

This will repeat the commands inside the [] brackets
indefinitely and draw a closed shape. You can stop the
turtle drawing by pressing <ESC>. The type of figure is
determined by : ang Le; for example, a value of 90 draws a
square, a value of 60 draws a hexagon. The size of the
figure depends upon : s i d e .

Using Conditionals

We use the word if in everyday speech. For example:

'If we have some eggs, I'll make an omelette.'
'If Father Christmas comes down the chimney, the trip
wires will get him!'

Sometimes, it appears with otherwise:

'If there's anything decent on television, I'll watch
it, otherwise I'll switch it off.'

Each of these sentences starts with a test or condition
which is either true or false. After that, there is an
action which will be taken if the condition is true. In
the last case, there are two actions: one is taken if the
condition is true, the other if the condition is false.

Logo has an i f statement, as well, and it is called a
conditional. For example:

1 : b u i l d 'compass

compass
if heading = 0 Csay 'north]
if heading = 90 Csay 'east]
if heading = 180 Csay 'south]
if heading = 270 Csay 'west]
if heading = 360 Csay 'north]

1: repeat 360 Cright 1 compass]

control

This prints out the main compass points as the turtle
turns. Each i f statement tests for a condition (for
example, headi ng = 0) and takes an action if the
condition is true.

In the example, there is only one action and it is held
within the [] brackets. You could, if you wanted, have
two sets of [] brackets and this would correspond to the
second form of if: (if...actionl, otherwise...action!).

For example:

1: bui Ld 's ign

sign 'number
i f :number < 0 [r esu l t 'negat ive]

[r esu l t 'posi t i v e]

Here, if the condition : numbe r < 0 is true, the
contents of the first [] brackets are obeyed; if it is
false, Logo obeys the contents of the second [] brackets.
For example, try running s ign 14 and s ign —20.

Two other conditionals similar to i f are available in
RMLogo: un le s s and branch.

un l e s s executes a command unless a condition is true.

branch is a little more complex and is described in the
Reference part of this book.

There are also two other conditionals which are similar to
repea t a n d f o r e v e r : d o . . . u n t i I a n d d o . . - w h i l e .

d o . . . unt i I repeats a command list until a specified
condition is true. The commands are run one or more times.

d o . . . wh i I e repeats a command list as long as a specified
condition is true. The commands are run zero or more
times.

Flow of control

One command that sometimes gets you out of a problem is
g o t o . . . Use it when you need to escape from your
procedure.

i f not assertedq :p :v [goto ' t r oub le]

trouble:—say Csorry I c a n / ' t help] stop

t roub le :— is a tag and the goto primitive passes
control to the command after this tag. goto only works
within a procedure. If you want to pass control outside
of the procedure you will need to use th row.

Try not use goto frequently. Structured programs are
clear, efficient and easily checked, so it is usually
better to use procedures.

RM Logo gives you a wide variety of tests in the infix
form (for example, = and<) and also the prefix form (for
example, equa Iq and lessq) . They are described in
detail in the Reference part of this book.

Recursion

Recursion is another way of repeating some actions when
you don't know how many repetitions are needed. It
involves a procedure calling itself. For example:

1: bu i ld ' sp i ra l .square

spi raI .square 's ide
forward :side
r i gh t 90
sp i ra l .square :side + 2

If you type something like:

1: sp i ra l .square 10

Flow of control

this will draw lines of increasing size, producing a
square pattern. The last line is called the
recursive line or the recursant.

You can stop Logo drawing lines by pressing <ESC>, but it
is better if your procedure stops itself using i f:

1 : e d i t ' s p i r a l . s q u a r e

spiral.square 'side
if :side > 150 Estop]
forward :side
right 90
s p i r a l . s q u a r e : s i d e + 10

Below is an example of recursion using numbers:

1 : bui Ld ' countdown

countdown 'number
say :number
countdown :number —1

When you run countdown, the following happens (very
quickly):

1 : countdown 4
4
3
2
1
0
- 1
- 2

and so on, until you press <ESC>.

5.6

Flow of control

When you type in:

1 : countdown 4

the first line of countdown prints 4 and the next
line is then executed. This is effectively:

countdown 3

and it has the same effect as if you had typed it in from
the keyboard: it prints 3 and then tells Logo to do the
following:

countdown 2

This carries on until you press <ESC>. If you want to
stop countdown when it reaches zero, you can do so
with the following modification:

1 : e d i t 'countdown

countdown 'number
say :number
i f :number = 0 Estop]
countdown :number —1

After running countdown it will end on the screen
with:

2
1
0
1 :

The 1: is the Logo screen prompt of course.

Here is another numeric problem that needs a recursive
procedure. It involves the addition of several
consecutive numbers:

5.7

Flow of control

1 + 2 = 3
1 + 2 + 3 = 6
1 + 2 + 3 + 4 = 10

1 + 2 + 3 + 4 + . . . + n = . . .

In each of these cases, the addition is the same as the
one on the previous line, but one more number is added.
In other words, the sum of all the numbers up to and
including n is the sum of numbers up to and including
(n—1) plusn.

This can be done in Logo with the following recursive
procedures:

1 : bui Ld "sum.n

sum.n ' n
i f :n = 1 [r e s u l t 1]
r e s u l t :n + (sum.n :n—1)

or

sum.n :n
r e s u l t i f :n = 1 [1] C:n + (sum.n : n - 1)]

When run, the procedures produce the same result. For
example:

1 : say sum.n 4
10

5.8

Flow of control

Throwing and Catching Control

Control has been shown to move through procedures. Once
the actions in a procedure have all been completed,
control either moves to the next procedure or stops if
there are no more.

th row and catch are a way of conditionally transferring
control from a procedure back to another which has been
marked to receive control. The procedure that throws
control need not have been completed. The following
procedures demonstrate this happening.

1: bui Ld ' top.prog

top.prog
catch "rock [mid.prog] ; top.prog catches contro l
say 'done

1: bu i ld 'mid.prog

mid.prog
say " a l l
bottom.prog
say ' l o s t

1: bu i ld 'bottom.prog

bottom.prog
say ' i s
throw 'rock ;bottom.prog throws cont ro l
say 'completely

The program is run by typing top . prog and returns:

a l l
i s
done

5.9

Flow of control

rock is a signal which bottom, prog throws to the
procedure that called bottom, prog. If the calling
procedure can't deal with the signal rock, it throws it to
the procedure that called it. This action repeats until
either the signal is caught or the program ends. Throwing
a signal which is not caught does not give an error.

The RM Logo system throws signals that you can catch in
your programs. The two most important of are:

More information on handling errors with ca tch and
throw is given in chapter 12. Other system commands
throwing signals are included in the reference section.

Summary of Primitives

awai t
Suspends calling process until a condition is ' t rue

begin
Runs a command in parallel with current process

catch
Accepts control from a t h row

do un t i L
Runs a list of commands until condition is t rue

eequalq (==)
Tests if inputs are exactly equal

equalq (eqq ,=)
Tests if inputs are equal

escape
Stops current procedure and any calling procedure

end
Stops current procedure

5.10

throws a signal on encountering an error. ' a + ' b is
an illegal sum but catch ' e r r o r [p r i n t 'a + ' b]
will print nothing,

' f ence
If you have fenced the drawing area of the turtle then
a signal is thrown if the turtle crosses the edge.

)

:

Flow of control

forever
Repeats a command forever

goto
Jumps to a given label

g r e a t e r e q u a l q (geq , >=)
Tests if first input is greater than or equal to the
second

g r e a t e r q (g r q , >)
Tests if first input is greater than the second

if
Executes one of two commands depending upon the
state of a condition

l e s sequa lq (Leq,<=)
Tests if first input is less than or equal to the
second

Lessq (l s q , <)
Tests if first input is less than the second

p a r a l Let
Suspends calling process and runs a command

repea t
Repeats a command a number of times

r e s u l t
Returns result of a procedure

run
Runs a list of commands

s top
Stops current procedure and returns to calling
procedure

throw
Passes control to the appropriate catch

unequalq (ueq ,~=)
Tests if inputs are unequal

u n l e s s
Executes a command unless a condition is ' t r u e

whenever
Evaluates a test repeatedly and runs a command
when it is ' t rue. Used in parallel processing

whi le
Executes a command repeatedly when a test returns true

5.11

Managing your Workspace

'•

Chapter 6
Managing Your Workspace

Your computer's memory is called its workspace and is used
/ to hold procedures and variables. You can print the

contents of the workspace, delete them and modify them
using primitives described in the first section of this

/ chapter.

When you switch off your computer, the contents of the
workspace are lost, so you need to copy them on to disk if
you want to use them again without having to type them in
again. The way you do this is described in the second
section.

v The third section shows how you can 'capture' a sequence
of commands typed in and replay them at any time.

Finally, the last section describes a number of file
/ maintenance primitives.

Manipulating the Contents of your Workspace

You can display the contents of your workspace on screen
j using t i t Les. For example:

1 : say t i t l e s
/ square t r i a n g l e rhombus

You can display ("print out") procedures on screen using
po. To show the contents of one procedure for example:

1 : po ' t r i a n g l e
t r i a n g l e ' s t eps
repeat 3 Cfd :s teps I t 120]

6.1

(

<

Managing your Workspace

Or you can display the contents of several procedures
together. For example:

1: po [t r i a n g l e square]

Unlike bui Ld and edi t , any word input to po must
have a quotation mark.

Alternatively, text will return the contents of a
procedure in the form of a list:

1 : text ' t r i a n g l e

returns:

[[t r i a n g l e "s ide] [repeat 3
[f d :s ide I t 120]]]

If you want to delete a procedure, you can do so using
scrap:

1 : say t i t l e s
square t r i ang le rhombus

1: scrap [t r i a n g l e rhombus]

1: say t i t l e s
square

Preserving your Work on Disk

You can copy your procedures onto disk using the save
command. They are then preserved when the computer is
switched off. For example, the following command saves
all your procedures in the fileshapes.Lgp:

1: save 'shapes. Igp

6.2

Managing your Workspace

(

Now, when you switch on your computer again, you can load
the procedures back into workspace by typing:

1 : Load 'shapes.Lgp

A//of the procedures in the file shapes will be loaded.

Replaying a Sequence of Commands

You can make a record of everything typed using the
d r i b b l e primitive. For example, if you type:

(

(

(

(

(

(

(

(

(

all subsequent commands will be written (dribbled) to the
file s e s s i o n . If this file already exists, the
commands will be added to the end of it.

When you type nod ribbLe, dribbling will stop.

If you now want to replay the sequence of commands typed
in, just type:

1 : r ep lay ' sess ion

The replay will stop when the end of the file is reached.
If an error occurs, the file will continue to be read.

If you want to ensure that the replay stops when an error
occurs, you must use consu I t :

6.3

Managing your Workspace

File Maintenance Operations

At some point you will want to do some or all of the
following operations:

• Delete (or erase) a file

• Rename a file

• Look at the disk directory

The primitive e rasef i Le allows you to do the first
of these. For example:

1 : erasefiLe 'shapes.Lgp

will erase the file shapes , if it exists, and return the
value ' t r u e. If not, it will return the value ' f a l s e .

To rename a file you use renamef i Le. For example:

1 : renamefiLe 'shapes.Lgp 'newshapes.Lgp

changes the name of the file shapes to newshapes.

You can return the contents of a disk directory to your
program, in the form of a list, using thedi r e c t o r y
primitive.

di r e c t o r y takes one input in the MS-DOS format but
remember that the * and : characters are special to Logo;
a backslash character \ is needed to protect them. For
example:

1: p r i n t d i rec to ry ' \ * . lgc
or
1: p r i n t d i rec to ry 'shapes.*
or
1: p r i n t d i rec to ry ' \b: * . lgp

Managing your Workspace

Summary of Primitives

consult
Replays command file and stops on error

d r i b b l e
Writes all subsequent commands to a command file for
replay

dr ibb leq
Tests whether session is being recorded

e r a s e f i l e
Deletes a file

keep *

load *

po

p r i n t

Saves named procedures in a file

Loads procedures from a file

Prints contents of procedures

Prints text on screen including list brackets and
special characters

renamefi le
Renames a file

r ep lay

save *

say

scrap

text

Replays a command file and ignore errors

Save procedures in a file

Print text on screen without list brackets

Erase a procedure from workspace

Return procedure in the form of a list

* These are Logo library procedures, loaded and buried
when you enter Logo. See Chapter 15 for more details.

6.5

V,

I

(

(

(

(

Simple Input/Output

Chapter 7
Simple Input/Output

This chapter describes a number of types of simple input
and output which do not fall within the scope of turtle
graphics.

Printing on the Screen

You can print on the text area of the screen using the
primitives s a y , p r i n t and type .

say prints the value input to it and follows this with
a carriage return. For example:

1: say 1 + 3
4

1: say [hello there!]
hello there!

Notice that lists are printed without their outermost
brackets.

p r i n t has a similar effect to say, but lists are printed
with their outermost brackets. For example:

1: pr int 1 + 3
4
1: print [hello there!]
[hello there!]

Simple Input/Output

type is similar to say, but the text output is
not followed by a carriage return. For example:

1 : type 'banana
banana l :

type is ideal for sending escape sequences because it
does not automatically give a new line.

You can output text to the graphics part of the screen
using La be I. This prints text at the current turtle
position.

Two other primitives which can be used to effect with say,
p r i n t and type are s e t c u r s o r and cu r so r .

s e t c u r s o r moves the text cursor to a given position and
cursor returns its position in the form of a list. For
example,

se t cu r so r L"22 16]

moves the text cursor to line 22 and column 16. Text mode
has a different arrangement to graphics mode:

)

)

)

)

line

25

column
- 8 0

20
line I

25

column
- • 4 0

text mode graphics mode

7.2

Simple Input/ Output

from the Keyboard

The primitive key will suspend the process that called it
until you strike a key. It will then return the value of
the key struck. Digits are returned as a Logo number,
other characters are returned as one-character words. If
Logo is reading a command file, key still returns the next
character from the keyboard.

The following procedure uses key. It lets you control the
turtle's movement using only five keys:

1 : bui Ld 'move

move
check.key key
move

1 : bui Ld check.key

check.key 'bu
if :button =
if :button =
if :button =
if :button =
if :button =

1: check.key

tton
•L [Left 10]
•r [right 10]
•f [forward 10]
•b [back 10]
'c [cLearscreen]

Leave the procedure by pressing the <ESC> key.

If you want, you can make the turtle-move forward
continuously and just use the L and r keys to change its
direction. To do this, you use the primitive keyq.
keyq returns the value ' t rue if a key has been struck
and lets you read the key's value using key.

7.3

Simple Input/ Output

The new procedures could look like this:

1: ed i t 'move

move
i f keyq [check.key key]
forward 0.01
move

1: ed i t check.key

check.key :button
i f :button = 'L [Lef t 10]
i f :button = ' r [r i g h t 10]

Summary of Primitives

cursor
Returns position of cursor in form of list

key
Suspends calling process until key is struck and
returns key value

keyq
Returns ' t rue if key is struck but does not suspend
calling process

p r i n t
Prints text with list brackets

say
Prints text without list brackets

s e t c u r s o r
Moves cursor to specific position

type
Prints text but does not send final carriage return

Arithmetic

Chapter 8
Arithmetic

Logo handles numbers in a variety of forms. It also
allows you to perform arithmetic operations in your
programs.

Positive and Negative Numbers

A Logo number consists of one or more numerals and it can
contain a minus sign (-). However, if you have a unary
minus that could be interpreted as a binary minus then it
must be appropriately bracketed. For example:

1 : p r i n t add 10 - 2 0

Logo c a n ' t do "add" i n t h a t command because " a d d "
needs more i n p u t s
1 : p r i n t add - 1 0 20
10
1 : p r i n t add 20 (-10)
10

This does not apply inside a list. For example you can
usese tpos [50 —50] and it will work.

Numbers can be separated from other items on a line by
using spaces:

1 : say 200
200
1 : say 100 - 2 0 0
-100

Numbers can be integers or decimal numbers and they are
printed with a precision of up to 15 decimal places.

8.1

Arithmetic

These are known as infix operators, because they appear in
between two numbers. For example:

1 : say 10 * 3
30

Infix operators have equivalent prefix operators, which
appear in front of two numbers. For example:

1 : say m u l t i p l y 10 3
30

1 : say d i v i d e 10 2
5

Infix operators are associated with the appropriate prefix
operators in the Reference part of this book.

Trigonometric primitives are also supplied. These include
s i n (sine), cos (cosine), tan (tangent) and
a tan (arctangent).

They take an input in degrees, for example

1 : say s i n 30
0.5

The transcendental functions log, In, exp and sqt are
also included in Logo.

Arithmetic Operators

The Logo arithmetic operators include:

)

* multiply
/ divide
+ add
— subtract
| power

)

)

)

8.2

Arithmetic

i nt and f r a c are the two useful primitives that
separate integer and fractional parts of a number,
i nt chops the number off at the decimal point and
f r a c gives the part of the number chopped off.

Random Numbers

Logo is able to return a random integer number to you in
the range of 1 up to a number that you specify. This uses
the pick command: Logo picks an integer out from the
given range. For example:

1 : repeat 20 [say p i c k 33]

will return a list of twenty integers chosen at random
from the range 1 to 33.

However, if you wanted a random number in the range 0 to 1
then use the random primitive. This returns a number
of fourteen decimal places.

Summary of Primitives

abs

ac ros

add (+]

a s i n

a tan

cos

d i v i d e

Absolute value

Arc cosine
i

Addition

Arc sine

Arctangent (result in degrees)

Cosine
(d i v , /)
Division

8.3

Arithmetic)

)

Exponential function

Fractional part

Integer value

Natural logarithm

)

)

l

)

exp

f rac

i n t

Ln

Log
Logarithm to base 10

mu l t i p ly Cmul, *)
Multiplication

Pi
Returns the value pi

pi ck
Returns pseudo-random integer

power (|)
Raising one number to the power of another

random
Returns random fraction between 0 and 1

remainder (rem, %)
Returns remainder after a division

sha re (/ /)
Returns integer quotient after division

s i n
Sine

sq t
Square root

s u b t r a c t sub (-)
Subtraction

tan
Tangent

8.4

(
Words and Lists

(

Chapter 9
Words And Lists

Text manipulation is one of the significant parts of
(Logo. Text comes in the form of words and lists and you

can produce some very sophisticated programs using the
list-handling primitives. This chapter describes words
and lists, together with these primitives.

(
Words

In spoken languages, a word is a group of letters which
/ conveys some idea. The concept of a word in Logo is

similar.

Logo words must be preceded by a quotation mark. For
example, the following are all words:

'cats
'rats
'r2d2
"12
•1066

The quotation mark tells Logo that whatever follows is to
be treated as a word. Quotation marks in this position
are not regarded as part of the word and will not be

/ printed by say:

1 : say ' c a t s
ca ts

(

You can break words into smaller words using the
primitives fi r s t . Las t , b u t f i r s t , r e s t and
hut I act but Last.

9.1

(

Words and Lists

For example:

1 : say f i r s t ' t o r t o i s e
t

1 : say Last ' t o r t o i s e \
e

1 : say r es t ' t o r t o i s e \
o r t o i s e

1 : say j o i n ' t o r t o i s e 'sheLL
t o r t o i s e s h e l L

You can also join (concatenate) words using j o i n : \

)

j o i n , like some of the other primitives, has an infix form
++. For example: \

1 : say ' t o r t o i s e ++ ' s h e l l
t o r t o i s e s h e l l \

It you type the following:

)
1 : say b u t f i r s t ' x

this prints a word with no letters (called the J
empty word). You can use the empty word in a command or
procedure by typing a quotation mark on its own. For
example: j

1 : say '

The following commands show how you can use the empty
word to stop a procedure from running:

1: bu i ld ' t r i . p r i n t

9.2

Words and Lists

tri.print 'Letters
if :Letters = ' Estop]
say :Letters
tri.print butfirst :Letters

1: tri.print ' Logo
Logo
ogo
go
o

Logo's ability to combine data into structures called
lists is very useful. A list consists of a number of
elements separated by spaces and surrounded by a pair of
square brackets. For example:

[1 2 3 4 5]
[cats dogs hamsters]

The elements of a list can be words, as shown above
(notice that words do not need preceding quotes when used
in a list). They can also be numbers or other lists. For
example:

[[tor to isesheLL tabby persian]
[Labrador aLsatian mongreL]]

You can print the contents of a list using pr i nt and
say. say will strip off the outermost brackets,
p r i n t will not. For example:

1: p r i n t [k i tchen dining.room s t a i r s]
[k i tchen dining.room s t a i r s]

1: say [k i tchen dining.room s t a i r s]
ki tchen dining-room s t a i r s

9.3

Getting Started
)

)

You can break lists into smaller lists or words using the
operators f i r s t . Las t , butf i r s t andbut Las t v

For example, this command:

1 : make 'house [[k i t chen dining.room Lounge]
[s t a i r s] [bedroom bathroom]]

groups the rooms of a house into upstairs rooms,
downstairs rooms and the stairs. The following commands
isolate each of these groups.

1: p r i n t f i r s t :house
[k i tchen dining-room Lounge]

)
1 : p r i n t Last :house
[bedroom bathroom]

1: p r i n t b u t f i r s t butLast :house
[s t a i rs]

I
You can insert an element into a list using the primitives
p u t f i r s t andputLas t :

1: p r i n t p u t f i r s t 'study [k i tchen dining-room
Lounge]

[study kitchen dining-room Lounge]

1: p r i n t putLast [bedroom bathroom]
'shower.room

[bedroom bathroom shower.room]

putf i r s t and put Last have the infix forms+> and
<+ respectively. So another way of writing the two
examples above would be:

p r i n t 'study +> [k i tchen dining-room Lounge]

p r i n t [bedroom bathroom] <+ "shower.room

)

Words and Lists

amongq or memberq will tell you if a list
contains a specified element:

1 : say amongq ' s t udy [s t udy k i t c h e n
d i n i n g . r o o m] t r u e

1 : say amongq 'bathroom [s t u d y k i t c h e n
d i n i n g . r o o m] f a Lse

Pointers

is the list pointer. It enables you to look at a
particular element in a list or place an element in a
list.

If you create a list pe t s for example:

1 : make ' pe t s [dog f i s h cat hamster f r o g]

you might later on want to be reminded what the third
entry in the list is. This can be done by:

1 : p r i n t :pe ts # 3
' c a t

also works for identifying elements of a list in a list,
such as a list of coordinate pairs for example:

1: make 'points [[0 0] [50 0] [50 50] [0 50]]
1: print :points #1
[0 0]
1 : p r i n t : p o i n t s #2 #1
50

Now change an entry in the list of pets. If the
third entry should be spider then pe t s is amended by:

1 : make ' pe t s #3 ' s p i d e r

9.5

I
Words and Lists

This makes the updated list:

Cdog f i s h sp ide r hamster dog]

To amend the second entry in the list of coordinate pairs
you use # in a similar way.

1 : make ' p o i n t s #2 #1 32 s

The list p o i n t s is now:

)
[CO 0] C32 0] [50 50] [0 5 0]]

Other Operations on Words and Lists

RM Logo allows you to perform other operations upon words
and lists. For example:

• ed i t L i s t will let you edit a list in the edit window
and will return it in the form it was given in

• ed L i s t will let you edit a list in the edit window
and will return it as a list of lists

• count will return the number of elements in a word or
list

• emptyq will tell you if a variable contains the)
empty word or the empty list

• exp Lode will turn the contents of a word into a
list, each element of which is a letter or number of
the word

)
• i mp Lode will join the elements of a list into one word

9.6
)

(

Words and Lists

Summary of Primitives

/ amongq (memberq)
Tests if an item is an element of a list

b u t - f i r s t , r e s t (bf)
Returns all elements of a word or list other than the
first

b u t l a s t (b l)
Returns all elements of a word or list other than the
last

count
Returns the number of elements in a word or list

emptyq (emq)
Tests for the empty list or empty word

eval
Evaluates the contents of a list

explode
/ Separates elements of word into list

f i r s t
Returns first element of word/list

implode
Joins elements of list into word

/ Returns nth element of list

j o i n (++)
Joins two words or lists

/ l a s t
Returns last element of word/list

lowercase (l e a s e)
/ Changes text to lower case

p u t f i r s t (pf , +>)
Puts item as first element of list

/ p u t l a s t (p i , <+)
Puts item as last element of list

r e s t
/ Same asbutf i r s t

sen tence (s e , &&)
Joins two lists

uppercase (ucase)
Changes text to upper case

9.7

(

{

(

(

(

(

(

(

(

1

(

Organising Information
\

(

Chapter 10
Organising Information

Introduction

(

(

RM Logo allows you to build up a filing system, or
database, in the computer's memory and use it to store
information in an ordered way: for example to hold names
and addresses.

The categories which allow you to build a database in
Logo are called properties. For example, you might have
a name ' rover with the property ' s p e c i e s and
' s p e c i e s could have the value dog. You can
associate these three items by using the a s s e r t primitive:

1 : asse r t ' r o v e r ' spec ies "dog

You could give a number of other names the property
' s p e c i e s ' in a similar way:

1:
1:
1 ;
1:
1:

assert
assert
assert
assert
assert

'whiskers 'species 'cat
'patch 'species 'dog
'joey 'species 'parrot
'fido 'species 'dog
'scotty 'species 'dog

You can now build up your filing system by giving a name a
number of other properties:

1 : asse r t ' r o v e r 'b reed 'Labrador
1 : asse r t ' r o v e r ' c o l o u r ' go lden
1 : asse r t ' pa t ch 'b reed ' d a l m a t i a n
1 : asse r t ' pa t ch ' c o l o u r [b l a c k and w h i t e]

10.1

Organising Information

If you want to, you can now examine the property values
using the primitives a s s e r t e d and a s s e r t ions ,
a s s e r t e d returns one property value of a name:

1: say asserted ' rover 'breed
Labrador
1: say asserted 'patch 'breed
dalmatian

Up to now, you have set up a number of assertions which
you can picture as linked to each name:

rover

golden

You can get hold of all the property values of a name
(the categories it belongs in) using the primitive
a s s e r t i o n s :

1: say assert ions ' rover
[species dog] [breed Labrador] [colour golden]

You can remove a property and its value using deny:

1:deny ' f i d o 'species
1:deny f i do ' type

You can find out what names the database knows about by
using the ob j e c t s primitive. For example:

1: say objects

might produce the following names:

[rover f i do whiskers patch joey sco t ty]

10.2

Organising Information

A Simple Database

Let's now develop a procedure de L .props that will allow
you to delete all the properties of a name. The procedure
can find the list of property values using a s s e r t i o n s
and then pass this list on to another procedure,
de L .p rops .o f . This in turn will work through the list and
use deny to delete each of the properties in turn.

A procedure de L .props is needed which will be called
as though you typed:

del.props ' rover

Another procedure, d e l . p rops , of is needed to be
called as though you typed:

del .props.of ' rover [[species dog]
[breed Labrador] [colour golden]]

Before doing anything else, de I . p rops , of should
ask whether the list of assertions is empty; if so, it can
stop. From this, it can be worked out that the first two
lines of d e l . p rops , of must be:

del .props.of :name :assns
i f emptyq :assns [s top]

Otherwise, the f i r s t element (the property name) in the
f i r s t property pair of : a s sns needs to be looked
at. Specifically, this is speci e s , and it is all that is
needed to deny the property pair.

The remaining properties can be deleted using
d e l . p r o p s . o f again, with the r e s t of assns
as input.

Organising Information

The complete procedures are listed below:

1 : bui Ld "de l . p rops

d e l . p r o p s 'name
d e l . p r o p s . o f :name a s s e r t i o n s :name

1 : b u i l d d e l . p r o p s . o f

d e l . p r o p s . o f 'name 'assns
i f emptyq :assns Estop]
deny :name f i r s t f i r s t :assns
d e l . p r o p s . o f :name res t rassns

All you need do is call de I • props with the appropriate
name as input. For example:

1 : d e l . p r o p s ' f i d o

will delete all properties and their values for the name
' f ido .

Retrieving Information

Now that the rudiments of a database have been built up,
you can look at it in more interesting ways and manipulate
it. For example, you could find out which names have the
property ' s p e c i e s using the primitive c l a s s i f i e d :

1 : p r i n t c l a s s i f i e d ' spec ies
Crover whiskers patch joey s c o t t y]

It would be useful if you could also find out which of the
above names belong to the species ' dog. Lets develop a
procedure g e t . d e t a i Is to do this. The procedure
will be called as though you type something like the
following:

g e t . d e t a i Is ' spec ies 'dog

10.4

Organising Information

It will first need to use c L a s s i f i ed to get a list
of names which have the property s pe c i e s. It will then
pass on this list, together with the property value dog,
to a procedure scan . Lis t .

s can. L i s t should first look at the list and check that
it is not empty. If it is, then no names satisfy the
condition and s c a n . L i s t can return the empty list as its
result. The procedures so far are as follows:

1 : bui Ld ' g e t . d e t a i Ls

g e t . d e t a i L s ' p r o p e r t y 'propvaLue
resuLt s c a n . L i s t c L a s s i f i e L d : p r o p e r t y

: p r o p e r t y :propvaLue

1 : bui Ld ' s c a n . L i s t

s c a n . L i s t 'names ' p r o p e r t y 'propvaLue
i f emptyq :names CresuLt []]

Now the first name can be looked up in the database using
a s s e r t e d to find the property value:

asser ted f i r s t :names ; p r o p e r t y

If the value of this is dog, it is included in the list
returned by scan . L i s t as its result. The following
(incomplete) expression now exists:

i f (asse r ted f i r s t : o b j e c t s : p r o p e r t y) = :propvaLue
CresuLt pu t f i r s t (f i r s t :names) scan. L i s t r e s t
:names : p r o p e r t y :propvaLue]

If the property value isn't one of interest, the name
needs to be ignored. However, there may be other names
in the list that are of interest.

10.5

Organising Information

So one last statement is added:

[r esu l t scan.List rest :names :property
:propvalue]

This is the final line of s c a n . L i s t , and the procedures
are now as follows:

1 : buiLd ' g e t . d e t a i l s

ge t . de ta i l s 'property 'propvalue
resu l t scan, l i s t c l a s s i f i e l d :property

:property:propvalue

1 : bu i Id 'scan, l i s t

scan, list 'names 'property 'propvalue
if emptyq :names [result I]]
if (asserted first :objects :property) =

: propvalue [result putfirst (first : names
scan, list rest :names :property :propvalu
[result scan, list rest :names :property
:propvalue]

Building a more Sophisticated Database

The rest of this section is about developing a database
containing names and details of people. Some procedures
will be introduced to help you to manipulate the database
in a more flexible way.

First think of categories of information (properties) you
might want to record for each person. It might include
their name, address, telephone number and interests. The
facilities already described allow you to create a
database containing this information and manipulate it in
a simple way. However, it would be useful if you could
input all of the properties for a given name at the same
time, instead of doing them one at a time using a s s e r t .

10.6

Words and Lists

The following procedure, c r e a t e . p r o p s , will do this
for you:

1: bu i ld ' create.props

create.props :name : List
i f : l i s t = [] [s top]
assert :name (f i r s t : L i s t) (f i r s t rest : L i s t)
create.props :name rest rest : Li st

This is how you use it:

1: create.props 'John.Smith [address
[33 Tin Pan AL Ley, Newtown] Telephone [0222 55555:
in te res ts [f i shing boa t i ng] :

1 : create.props 'Jane.Jones [address
[Hawthorns,Bi Llingsbrooke] Telephone [0111 59555]
in te res ts [f i s h i n g swimming ski i n g : :

Notice how "telephone" has a one-to-one relationship with
the telephone number:

john.smith [0222 55555]
jane.jones [0111 59555]

"Interests" however, is a one-to-many relationship:

• u . , ...: 11, — f i s h i n g
john.smi th=rrz^I , .

boating

f i shing
jane.jones s^E -swimming

ski ing

All of one person's interests are stored as a single Logo

10.7

Organising Information

list.
This is equivalent to typing:

assert ' john.smi th ' i n t e res t s
[f i s h i n g boat ing]

assert ' jane. jones ' i n t e res t s
[f i s h i n g swimming ski ing]

To find out whether John Smith is interested in chess you
could use:

1 : amongq 'chess asserted ' john.smi th ' i n t e res t s

Another question you might want to answer is "who is
interested in what?", meaning who is interested in
fishing, swimming or skiing? The primitive ob j e c t s is an
excellent starting point as it returns a list of every
object in the database. Try typing:

1 : p r i n t objects

The following program scan allows you to find an answer
to the question "who has the property with this property
value(s)?". For example:

1: say scan ' i n te res t s ' f i s h i n g

returns a list of those names whose property values
include fishing.

1 : bu i l d 'scan

scan 'property 'value
result scanl objects :property :value

10.8

J

Organising Information

1: build 'scanl

scan 'objs 'property 'value
if emq :objs [result []]
if assertedq first :objs :property &

amongq rvalue asserted fi rst :objs
iproperty [result pf f i rst :objs scanl
rest :objs :property rvalue]

result scanl rest :objs :property rvalue

Two other facilities would be useful to know:

• Adding items to property values (for example, to add
new i n t e r e s t s i n the example above

• Deleting several properties at the same
time

If you want to add items to property values, you can do so
using the following procedure:

bui Id 'add.props

add.props 'name 'property 'object
if not assertedq :name :property [assert :name

:property :object stop]
assert :name :property sentence (asserted :name

:property) (:object)

For example, the following command will add two new
interests to John Smith's entry:

1: add.props 'John.Smith ' i n t e res t s [skat ing mabel]

You can delete several properties at once using the
following procedure:

10.9

Organising Information

1: bu i ld 'delete.props

delete.props 'name 'object
i f :object = [] Estop]
i f wordq :object [deny :name :object stop]
deny :name f i r s t :object
delete.props :name b u t f i r s t :object

For example, the following will delete Jane Jone's
telephone number and interests:

1: delete.props 'Jane.Jones [telephone i n te res t s]

You can then type in new ones using c r e a t e , props .

There are many other ways in which you can improve upon
this database and its methods of access. For example, you
could try modifying check, props and scan , l i s t to allow
you to search the database for people with two common
interests, instead of just one.

Reasoning by Inference

Think about this database:

assert
assert

assert
assert

assert
assert
assert
assert

assert
assert

'Robin 'age 3
'Robin 'is_a 'boy

'Louise 'age 8
'Louise 'is_a 'girl

'boy 'state 'sticky
'girl 'state 'clever
'boy 'is_a "person
'girL 'is_a 'person

•person 'wears 'clot
"person 'has ' legs

10.10

Organising Information

It can be represented diagrammatically as follows:

B O Y * # G I R L

\state state ,

ROBIN.*) | if • LOUISE

a g e / • • \ a g e
If STICKY CLEVER X »

You can now write a procedure i n f e r which will try to find
the value of a specific property for a given object. If
it can't, it will use the property i s_a to make an
inference, or deduction:

1 : bui Ld ' i n f e r

infer 'object 'property
if assertedq :object :property CresuLt asserted

:object :property3
if assertedq :object 'is_a CresuLt infer

(asserted :object "is_a) :property]

For example:

1: say infer 'Louise 'age
8

1: say infer 'Robin 'state
s t i c ky

1: say infer 'Louise 'has
Legs

1: say infer 'Robin 'wears

cLothes

10.11

file:///state

Organising Information

The first line of i nf er tries to get the value of the
appropriate property for a given name. If it can't, it
searches 'backwards' up the tree along the i s_a property
route to try and find the property at a higher level.

Summary of Primitives

assert
Assigns a property value

a s s e r t e d
Returns property value of a name

a s s e r t e d q
Tests for existence of a property

a s s e r t i o n s
Returns list of property pairs

c l a s s i f i e d
Returns list of names which have a given property

deny
Deletes a property and its value

o b j e c t s
Returns a list of all the values that are associated
with properties

10.12

File Handling

(

Chapter 11
File Handling

(

(

(

Disks and Files

Disks are one of the most versatile ways of storing
computer data. They are compact and can hold a large
amount of information which can be retrieved quickly and
easily. RM Nimbus can use 3.5-inch disks or Winchester
disks as part of a standalone or network Nimbus.

Disk file storage is similar to the storage method used in
libraries. Each book in a library contains information
and it has an entry in a central index. This index is a
type of directory which tells you where to look for books.

You can think of disks as containing files which
correspond to the books in a library. Each file has a
name, usually one to eight letters, a dot and three
letters. Each file can hold information such as text,
programs and raw data. For each file there is an entry in
a directory which holds, for example, the filename and the
position of the file on the disk.

(The analogy can be taken further. To find a book in the
library, you look at the index (directory) to find out
where the book is. You then take the book out, read its
contents and, finally, close it and put it back.

With a disk filing system, Logo would look at the disk
directory to see where the file is and to open it. Your
program would then read information from the file and,
finally, close it. The action of opening the file is like
looking in the library's index.

When a librarian wants to put a new book into the library,
an entry is created for it in the index which puts the

11.1

File Handling

book into its correct position in the library. With disks,
the procedure is similar, but this time the actions are
carried out by your program and Logo. When your program
asks Logo to create a new file, Logo creates a new entry
for the file in the disk's directory, specifying the
filename. Your program can then write records to the file
and close it.

A book can be put in the library, but no-one else will
know where it is until the library's index has been
updated. Similarly with disk files, Logo will not know
where the file is on the disk until the file has been
written and closed, at which point the directory is
updated.

To summarise, a disk is organised into a number of files
and these are indexed by a short directory. When your
program creates, or makes, a file three things happen:

• a new directory entry for the file is created

• information is written to the file

• the file is closed

When your program reads a file, again three things happen:

• the file is opened (after looking in the directory to
find out where the file exists on the disk)

• information is read from the file

• the file is closed

The primitives involved in these actions are:

Opening files: i n f i Le outf i Le appf i Le
Closing files: c Losef i Le
Reading an item: readf i Led, readf i l e e , r e a d f i l e l
Writ ing an item: wri t e f i Led, w r i t e f i L e c , wr i te f iLeL

11.2

< File Handling

Creating a Simple File

(
Suppose you want to create a file which contains details
of the people in a company. You might want to store the
following lines as separate records, for example:

1 Tay lo r Judy 44
2 Mas Lin Roger 20
10 Smith Tina 20
11 Jenk ins Tom 30
100 Watson Phi Lip 30

The first entry on each line is the 'personal number', the
second the name, and the last entry, the age. You might
allocate a particular range of personal numbers for each
department.

For example:

Range Department

1—9 Secretaries
10-100 Sales Staff
100—1000 Programmers

If you look at the entries shown, you will see that there
is a jump from personal number 2 to 10 and from 11 to 100.

I This is to allow for the addition of staff at a later
date.

These entries can be written to a file using the program
w r i t e . n a m e s . t o . f i Le. This reads each line as
a list from the keyboard and writes it to a named disk
file until you press ~ followed by <ENTER>.

(

11.3

http://write.names.to.fi

File Handling

1 : bu iLd ' w r i t e . n a m e s . t o . f i L e

write.names.to.fiLe 'fiLename
unLess outfiLe :fiLename Csay

[cannot create f i Le] escape]
unLess (write.fiLe :fiLename readList) &

(cLosefi Le :f i Lename) CsayCwriteerror]
escape]

1: bui Ld 'write.fi Le

write.fiLe 'fiLename 'record
if :record = [*] CresuLt 'true]
unLess writefiLed :record :fiLename

CresuLt 'faLse]
resuLt write.fiLe :fiLename readList

Let's look at these procedures a little more closely.
wri t e . n a m e s . t o . f i Le creates an output file
(using the primitive outf i Le) and you specify the name of
the output file as input to wr i t e . names . t o . f i Le
itself. The procedure w r i t e . f i L e is then
called to write the records to the file.

wri t e . f i Le uses the primitive wri tef i Led
to write each record to the file in the form of a data
item which you type in at the keyboard (using r eadLi s t) .
wri tef i Led returns the value ' t r u e if the operation
was successful and ' fa Lse if it was not. There are four
main reasons why it may not have been successful:

• The disk may be full (this corresponds to the shelves
being full in our library analogy)

• The directory may be full (this corresponds to a full
central index in the analogy)

• The disk may be protected via a write protect notch

11.4
• The disk is damaged

http://te.names.to.fi
http://te.names.to.fi
http://write.fi
http://'write.fi
http://write.fi
http://write.fi
http://te.names.to.fi
http://to.fi
http://te.fi

(File Handling

(w r i t e . f i Le is recursive: it keeps running until you
type in ~ at the keyboard, at which point
w r i t e . n a m e s . t o . f i Le closes the file using the
primitive cLosef i Le. cLosef i Le also
returns ' t rue if the operation was successful and ' f a Lse
if it was not.

<

(

<

You can run the program and write records to the file
names as follows:

? 1 [T a y l o r Judy] 44
? 2 CMasLin Roger] 20
? 10 [Smi th T i n a] 20
? 11 [Jenk ins Tom] 30
? 100 [Watson Phi L i p] 30
? *

Reading a Simple File

If you now want to read data back from the file names and
V

(

(

print it on the screen, you can do so using the program
given below:

1 : bu iLd ' r ead .names . f rom. f i Le

read .names . f rom. f i Le ' f i l e n a m e
un less i n f i l e : f i l ename [say

[f i Iedoes not e x i s t] escape]
catch ' e n d f i l e [r e a d f i L e : f i l e n a m e]
un less c L o s e f i l e : f i l ename

[say [read e r r o r] escape]

1 : bui Id ' r e a d f i Le

r e a d f i le ' f i Lename
f o r e v e r [say read f i Led : f i l e n a m e]

The f irs tcommandofread.names.from.fi le is
analogous to the first command of wri t e . n a m e s . t o . f i le

11.5

http://write.fi
http://write.names.to.fi
http://from.fi
http://rom.fi
http://firstcommandofread.names.from.fi
http://te.names.to.fi

File Handling

in that it opens a file for input (using i nf i Le).
The next command reads records from it using the procedure
readf i Le. Ignore the last command for the present
and look at r e a d f i L e first.

readf i Le uses the primitive readf i Led to read
each record from the file in the form of a data item and
then prints it on your screen, readf i Le runs
continuously until the end of the file is reached. When
this happens, readf i Led generates a throw 'endf i Le
and this is "caught" by the catch ' endf i Le
in read .names . f rom.f i Le. The file is
then closed (using the primitive c Losef i Le).

You can run this program and read back records from the
file names by typing:

1 : read .names . f rom. f i Le 'names
1 [TayLor Judy] 44
2 [MasLin Roger] 20
10 [Smi th T ina] 20
11 [Jenk ins Tom] 30
100 [Watson Phi L i p] 30

Changing Data in a File

You can change data in an existing file in three ways: you
can append data to it, you can delete data in it, or you
can replace existing data with new data.

Appending data to an existing file is simple: the method
is the same as for creating a new file, but instead of
using outf i Le to open the file you use the primitive
appfi Le.

The other two operations are a little more complex because
you can't modify the existing file: instead, you must read

11.6

http://read.names.from.fi
http://rom.fi

(

(

(

(

(

(

(

File Handling

its contents and write them, selectively, to a new output
file. The delete operation first is looked at first.

If you want to delete records in an arbitrary way, you
would give a list of the numbers to be deleted as an input
to d e l e t e . r e c o r d s

1 : bu i l d de le te . records . f rom. f i le

de le te . reco rds . f rom. f i l e ' f i lename 'de le t ions
unless o u t f i l e " tempf i le [say [cannot open

temporary f i le] escape]
unless i n f i l e :f i lename [say [cannot f i n d]

<+ :f i lename]escape]
delete.records : f i lename :delet ions (r f d

:f i lename)
unless c l o s e f i l e ' tempf i le [say [cannot

close temporary f i l e] escape]
unless c l o s e f i l e : f i lename [say [cannot

close] <+ : f i lename]escape]
unless e rase f i l e : f i lename [say [cannot

erase<+ : f i Lename] escape]
unless renamefi le ' tempf i le :f i lename [say

[cannot rename temporary f i l e] escape]

1: bu i ld 'delete.records

delete.records ' f i lename 'de le t ions ' record
i f ' record = ' end f i l e [s top]
unless amongq f i r s t :record :delet ions

[unless wri tef i ledata : record
: f i lename [say [w r i t e f a i led] escape]]

delete.records : f i lename :delet ions
(r f d : f i Lename)

The last amendment to try is adding records to the file.
There are different ways to do this, but the most
efficient is to put the records in ascending order into a
new file and then to process this file against the input
file.

11.7

/

http://records.from.fi
http://from.fi

File Handling

Let's call the file of additional records i n s e r t i ons,
the input file names, and create a procedure
add. records to read the two files and merge their
contents into one file in the correct order.

The procedure add. records would be called by:

1: add.records 'names ' i nse r t i ons

The actual procedures would be:

1: bu i ld 'add.records

add.records ' i nser t ions 'ma in f i l e
unless ou t f iLe ' tempfiLe Csay [cannot

create temporary f i Le] escape]
unless i n f i l e : inser t ions Csay Ccannot

open] <+ : inser t ions escape]
unless i n f i l e :ma in f i le Csay Ccannot

open] <+ :ma in f i le escape]
merge i n s e r t i o n s :main f i le (r f d

i n s e r t i o n s) (r f d :mainf i le)
unless c l o s e f i l e : inser t ions & cLosefiLe

:mainf i Le [say [read e r ro r] escape]
unless cLosef i le 'tempfiLe [say [cannot

close temporary f i le] escape]
unless erasefiLe :main f i le [say [cannot

erase] <+ :mainf i le]escape]
unless renamefiLe 'tempfiLe :ma in f i le [say

[cannot rename temporary f i Le] escape]

11.8

File Handling

1: bui Ld 'merge

merge ' i nse r t i ons 'mainf iLe ' ins_record
'main_record

i f : ins_record = ' end f i l e & :main_record =
'endf i Le[stop]

i f : ins_record = ' end f i l e f i r s t :main_record
< f i r s t : i n s _ r e c o r d

[i f wfd :main_record ' tempf i le
[merge : inser t ions :ma in f i le : ins_record
(r f d : m a i n f i l e)] [say [w r i t e e r ro r] escape]]
i f :main_record = ' end f i l e | f i r s t

:main_record> f i rs t : ins_record
[i f wfd : ins_record ' tempf i Le [merge
i n s e r t i o n s :mainf i Le (r f d : ins_record)
:main_record] [say [w r i t e e r r o r] escape]]

say [personal number is dup l ica ted: w r i t i n g
new record]

i f wfd : ins_record ' tempf i le
[merge i n s e r t i o n s :mainf i le (r f d : ins_record)
(r f d :main_record)] [say [wr i te e r ro r] escape]

A Few Last Words on Files

This chapter is intended to give you an introduction to
some of the Logo features. It has not covered all of the
primitives available for file handling; for example, you
can write characters to a file, instead of lists, and read
them back in the same way. The full range of file
handling facilities are covered in the list of primitives
at the end of this chapter.

The library file l i s t f i le .def , provided on your
RM Logo disk, lists the contents of any file using the
primitive readf i l ee .

11.9

File Handling

File Names

You identify a file using the file name and an extension
which describes the nature of the file, for example:
names. Lgd. You can also specify the disk drive code,
in which case you must follow it with a colon, for
example: a\: names . d a t . The colon needs to be prefixed
with \ because it is a Logo special character.

The filename consists of one to eight alphanumeric
characters (A to Z and 0 to 9) but the first character
must be alphabetic.

The extension consists of three alphanumeric characters.
You can use any combination you want. These are usual in
RMLogo:

Lgc
Logo commands (to be read by consu l t or replay)
Igd
Logo data
Igo
Logo special (news file)
Lgp
Logo procedures
Igx
Logo machine code extension
def
Logo procedures provided as library definitions

Using Temporary Files

The use of temporary files when amending a data file is
recommended!

In practice, you should not use temporary files with fixed
names. A better way to name them is to follow the
procedure whereby the latest copy of a file has the
extension dat for example, and the previous copy is kept
as backup, with the extension ba k.

11.10

File Handling

When you process the file, your program takes the
following actions:

• If the input file is callednames.dat, call the
temporary file names. $$$

• At the end of processing the files, delete any file
called names.bak (backup files should always
have the extension bak as many text editors expect it)

• Next, renamenames.dat to names.bak,
thereby making the "old" file the backup file

• Finally, rename names.$$$ tonames.dat

This means that you will need to be able to separate out
the filename and extension when you call a procedure
and the filename is given as input. For example:

1 : wr i te .names. to . f iLe 'names.dat

In conclusion, you need these two procedures to allow you
to do this:

1: bui Ld "fiLe.name

f i Le.name 'name
i f emq :name f i r s t :name = ' .

(r e s u l t ') (r e s u l t f i r s t :name++
f i l e . n a m e res t :name)

1: bu i ld ' change.extension

change.extension 'or ig inal .name
'new.extension

resu l t renamefi le :or iginal.name
(f i l e .name:o r ig ina I.name) ++
:new.extension

11.11

http://te.names.to.fi

File Handling

You can now change the name of the file names. da t to
names.bak and return ' t r u e by typing:

1 : change.ex tens ion "names.dat ' . b a k

Sorting out Disk Problems

If, for example, you mess up your disk by taking it out of
the drive while Logo has a file open for writing, you can
sort out the problem using the MS-DOS utility chkdsk.

Please see the Nimbus Owners Handbook for details of this
utility.

Summary of Primitives

app f i Le
Opens current file for appending

cLosefi Le
Closes current file

consu l t
Replays commands from a file

di r e c t o r y
Returns directory information as list

d r i b b l e
Writes subsequent commands to a file

d r i b b l e q
Checks if command dribbling is on

e r a s e f i l e
Erases a file

i n f i le
Opens a file for input

i n f i l e s
Returns names of files open for input

nod r ibb l e
Turns off dribbling

ou t f i le
Opens a file for output

11.12

(

File Handling

o u t f i Les
Returns names of files open for output

r e a d f i L e e , r fc
Reads a character from a disk file

readf i Led, rfd
/ Reads a data item from a disk file

readf i LeL, rf L
Reads a list from a disk file

renamefiLe
Renames a file

repLay
Replays a sequence of commands from a file

wri t e f i Lee, wfc
Writes a character to a disk file

wri t e f i Led, wfd
Writes a data item to a disk file

wri t e f i LeL, wf L
Writes a list to a disk file

(

<

(

(

(

(

(

(

(

(

(

11.13

c

(

I

'

Error Handling and Debugging

<

Chapter 12
Error Handling and Debugging

(

The first section of this chapter describes how to handle
, errors, both within your programs and from command mode.

The second section describes what to do when your programs
don't work.

Error H a n d l i n g

/ Handling Keyboard Mistakes

When Logo can't do what you want it to, it prints a
i message on your screen. Try typing the following, for

example:

<

<

(

(

(

1: print ad 1 2

Logo can't do "ad" in that command
because "ad" does not exist
1:

If you spot an error before you press <ENTER>
you can correct it by using <BACKSPACE>.

Other keys which will help you when inputting from the
keyboard are summarised as follows:

(

12.1

Error Handling and Debugging

<CTRL/G>
Erase everything on line

<CTRL/R>
Repeat last line input

<LEFT>
Move cursor one character left

<RIGHT>
Move cursor one character right

<TAB>
Move cursor right by one word

<SHIFT/TAB>
Move cursor left by one word

<F1>
Move cursor to start of command

<F2>
Move cursor to end of command

<F3>
Erase word to left of cursor

fC

fZ

V 7

-A

12.2

< F 4 >
Erase word to right of cursor

<F5>
Erase everything to left of cursor

<F6>
Erase everything to right of cursor

Erase character under cursor

<BACKSPACE>
Erase character to left of cursor

Error Handling and Debugging

I

(

(

<

(

<

(

Handling Errors in your Program

(The catch and throw primitives let you trap errors
in your programs. They can be used to trap events other
than errors — such as the end of a file.

()

<

catch will run a list of instructions. If throw
is called during the execution of these instructions, Logo
returns control to the catch statement.

Look at the following procedures, for example. They print
/ the squares of any number which you type.

1 : b u i l d ' p r i n t . s q u a r e s

p r i n t . s q u a r e s
catch ' f i n i s h [f o r e v e r [do .square ask

/ [p lease type a number]]]
p r i n t . s q u a r e s ; cont inue i f ' f i n i s h i s thrown

1 : b u i I d "do.square

do.square ' t e x t
un less count : t e x t = 1 & numberq f i r s t : t e x t

[say [p lease type one d i g i t] throw ' f i n i sh]
say f i r s t : t e x t * f i r s t : t e x t

If you type something other than a number, the procedure
do . square prints a warning message then returns
control to p r i n t . s q u a r e s after theca tch statement.
The process then continues.

Debugging Your Programs

A program which does not work is said to have a bug in it.
The process of finding and removing bugs is called
debugging.

12.3

Error Handling and Debugging
)

You can tell when a program doesn't work in two ways: when
you run the program, Logo may print an error message, or
the program may not do what you expected.

The first action you can take is one of prevention. You
can reduce the number of potential bugs in a program by
designing it as a number of procedures, each of which is
so small that it is unlikely to contain more than one bug.
Each procedure can then be tested separately.

If problems still exist, the next thing to do is look at
the program carefully. You can often 'squash' a bug by
sitting down with a pencil and a listing of the program,
and working out carefully what is going on inside the
computer. You can get a listing of the program on paper
by using the copy command, for example:

1 : copy ' f a c e)

will print out the procedure face . You might need to
type face first however! It is listed on the following
page. You can display the program on the screen by using
p r i n t o u t (or po) command or the edi t command.
For example:

1 : po " face
1 : e d i t ' f a c e j

Following an edit command, the procedure appears in the
"window" for editing, and you can change it as described
in Chapter 4. The editing keys are summarised around the
edit window remember.

Normally, e d i t , po and copy will tell you all you
need to know to correct a program fault, but occasionally
you may need Logo's special debugging tools. These are
the walk, t r a c e and bug commands, and symbolic
dumps, and they are described in the rest of this Chapter.

12.4

Error Handling and Debugging

Lk

The most useful and powerful debugging tool is the
command wa L k. Imagine that you've written a program
called face, and it doesn't work exactly as you want
it to. You really need to study it line by line as the
program runs. Here is the program face:

1 : bui

face

Ld " f

a r c r 50 360
r t
f d
f d
f d
f d
bk
r t
f d

90
20
20
20
20
30
90
30

L i f t
drop
L i f t
drop
L i f t

drop

Now type the command:

1 : waLk ' f a c e

Nothing happens, but Logo will remember that the program
face is to be "walked" not "run" when you type its name.

As face uses the graphics screen, remember to type cs
and then type:

1 : face

Logo replies by typing the first line of the program, like
this:

a r c r 50 3 6 0 . . . ?

12.5

Error Handling and Debugging

You can do one of four things now:

Press <ENTER>
Tells Logo that you want to run only this line of the
program. Logo carries out the a re r 50 360 command.
Afterwards, it will print the next line, and wait for
another response from you.

Press <ESC>
Tells Logo to stop immediately and return the 1: prompt.

Press <F9>
Tells Logo to run through the rest of the procedure. When
the procedure finishes, or invokes another, Logo starts
walking again. After finishing, the program will be
walked if you run it again.

Press <F10>
This tells Logo to stop walking and to run until the
program stops or hits an error. After finishing, the
program will be walked if you run it again.

You may also give wa Ik a list of program names, like this:

1 : walk [f a c e arms Legs]

To undo the effect of wa Lk, you use unwa Lk:

1 : unwalk ' f a c e

Now face will run!

Using t r a c e

For programs that do a calculation, the t r a c e command
may be more useful. It is used like the walk command:

1 : t r a c e ' f a c e o r l : t r ace [f a c e arms Legs3

and its effect is cancelled using the unt race command.

12.6

()

<

(

i

<

i

(

Error Handling and Debugging

When the program f a ce is now run, you will get a message
each time it starts and each time it finishes. When it
starts you get this message:

face was c a l l e d ?

and when it finishes, you get this message:

face f i n i s h e d w i t hou t a r e s u l t

t race is useful with programs that do a calculation.
For example, imagine that you wrote a program called sum
which is supposed to return the sum of all the numbers
held in a Logo list ' x.

1: bui Id 'sum

sum ' List
if emq :list [result 0]
result add first :list sum :list

1: make 'x [1 2 3 4 53

The expected result is 15. However, try sum and you'll
find that you need to use the <ESC> key to stop the
inaction. The message Pan ic : No nodes l e f t
might appear on the screen but don't panic — there isn't
anything wrong. Logo has detected a never-ending program.

To find out where sum is at fault, use the t r a c e
command. In this example, sum is obviously the culprit
since you are not calling any other programs. However,
sometimes you will be running a main program that calls
two or three subroutines, and you can then t r a c e any, or
all, suspect subroutines at the same time.

<

12.7

Error Handling and Debugging
)

If you issue the following two commands:

1 : t r a c e 'sum
1 : p r i n t sum :x

Logo replies:

sum was c a l l e d w i t h these i n p u t s
' l i s t = [1 2 3 4 5] . . . ?

sum was c a l l e d i n t h i s l i n e of "sum"
r e s u l t add f i r s t : l i s t sum : L i s t
w i t h these i npu t s
' l i s t = [1 2 3 4 5] . . . ?

In this example, the list is printed out by t race .
You will find that the message is repeated on screen and
the list is not reducing as might be expected. The line
of the procedure that action is sticking at is:

time the variable called x changes, type:

1 : bug "x

Then, when you type

1 : make ' x 5

Logo acknowledges it with: x = 5.

)

r e s u l t add f i r s t : l i s t sum : List

After a closer look, you might realise that it ought to be:

r e s u l t add f i r s t : l i s t sum b u t f i r s t : l i s t

Press the <ESC> key and then amend sum.

Using bug

A third tool is bug. If you want to be notified every

)

)

)

12.8

()

(

I

<

(

I

Error Handling and Debugging

As with t r a c e and wa L k, you can give bug a list
of variable names, bug and t race will also tell you which
line of which program was running:

A variable must exist before you can bug it. If you
haven't created a variable, then bug fails. This means
that inside a program that uses the new instruction, you
will have to insert bug like this:

new ' x
bug "x

To undo the effect of bug, use the unbug command.

Symbolic Dumps

A symbolic dump will print the current values of all
global variables. Type:

1 : dump

You can stop a symbolic dump by pressing <ESC>.

dump is provided as a library procedure on your RM Logo
disk.

Summary of Primitives

bug
\ Prints message when contents of variable changes

e r r o r
Returns data about last error

g r i evance
Returns text of latest error message

moan
Reproduces the last error

trace
Gives message when procedure is used

<
12.9

Error Handling and Debugging

wa Lk
Prints lines before execution

unbug
Cancels effect of bug

u n t r a c e
Cancels effect of trace

unwa Lk
Cancels effect of walk

)

)

|

I
12.10

Parallel Processing

Chapter 13
Parallel Processing

Introduction

You can quite often split a problem into a number of
smaller problems, and solve them separately. This
approach is very useful in programming and it makes
debugging programs a lot easier.

RM Logo allows you to take this approach a step further.
In some cases procedures can be run independently of one
another. RM Logo allows you to treat such procedures as
separate parallel processes and run them all at the
same time.

The significance of the 1: prompt should become apparent.
When a process is created, it is given a process number.
Whenever the keyboard is communicating with that process,
the process number is included in the prompt. Thus, if
you are 'talking' to process 3, the prompt will become:

3:

When you are not using more than one process, you are
talking to process 1. Hence the normal 1: prompt.

To see how parallel processes work, try a simple example.
First, build the following procedure:

1 : bu i l d "spin.square

spin.square
forever [square Lt 43]

Carefully type the following sequence of instructions and
watch what happens:

13.1

Parallel Processing

If this happens, you can use RM Logo's pa ra L Le L primitive.
This runs a number of other processes in parallel and
suspends the current process until they all stop. For
example, you could set 3 counters going as follows:

)

)

1 : spin.square <ENTER>
(press <CTRL/X>)
2 : t e l L 2 se tx - 5 0 f o r e v e r [square Lt 31] < E N T E R >
(press <CTRL/X>)
3: say 5 + 6 * 7
47

The first line you type runs the procedure s p i n . s q u a r e
as process 1. When you press <CTRL/X> this allows you to
create and run process 2. Once process two is running,
the third process can be run: it merely performs a
calculation.

You can use the next procedure in the same way:

1 : bui Ld 'count_up

count_up 'no ' p o s i t i o n
s e t c u r s o r : p o s i t i o n
say :no
count_up :no + 1 : p o s i t i o n

This moves the cursor to a given position and counts up
from a given number. You can set two counters going at
once with the commands:

1 : count_up 1 [5 20] K
(press <CTRL/X>)
2 : count_up 100 [5 30]

To stop both processes, press <ESC>. '

It you run more than two processes in parallel, or if the
initiation sequences are complicated, this method of
running becomes tedious.

•>

13.2

)

(

()

(

<

<

(

<

(

Parallel Processing

1 : p a r a l l e l [[coun t_up 1 [5 2 0]] Ccount_up
100 [5 3 0]] Ccount_up 1000 C5 4 0]]]

Sometimes begi n is more appropriate than para I le I.
begi n starts a new process which runs concurrently with
the existing processes.

When using parallel processes, you should remember that a
parallel process does not inherit turtles from the process
which started it. So the following will cause an error:

begin [f o r w a r d 50]

You can get round such a problem by using:

begin C t e l l 1 fo rward 50]

Problems With Parallel Processing

When two or more processes interact, problems of mutual
exclusion and synchronization can occur. These are
problems of timing and each is described in the following

/ sections.

(

Mutual Exclusion

The need for mutual exclusion is illustrated by the
following piece of code which has two processes adding
elements to the end of a list.

1 : make "x C]
1 : p a r a l l e l [[r e p e a t 10 [make ' x p u t l a s t

:x 'a]] [r epea t 1 0 [m a k e ' x p u t l a s t
:x ' b]] l

You might expect the end product to be a list with 20
elements; however, fewer than 20 are left in it. This is
because both processes try to expand the list at the same
time and overwrite each other.

13.3

Parallel Processing

mutual exclusion is needed to ensure that only
one process can access the list at any time: the
s i ng Le primitive gives us this facility. To see how it
works, first of all, define the following procedure:

1: ' bu i l d add_to_l is t

add_to_l is t 'data
s ing le
make 'x put las t :x :data
mu l t ip le

Now type the following:

1 : make 'x []
1 : p a r a l l e l [[repeat 10 [add_to_ l is t ' a]]

[repeat 10 [add_to_l is t 'bill
)

The procedure add_to_ l i s t updates the list and the
command si ng le tells RM Logo that no other process can run
while it is doing this. So you now end up with all 20
elements in the list. Logo reverts to the default state,
where several processes can access one procedure, when the
primitive m u l t i p l e is used.

Synchronization

13.4

The second problem of parallel processing is one of
synchronization between processes. When parallel
processes are running, there are times when one process
cannot continue until a specific event has taken place.
The process must indicate that it is waiting for the event
or that the event has taken place, so that other processes
can continue.

Suppose, for example, you have a global variable x which
is initially set to 0, and two processes, counter 1 and
counter2, access it. counteM adds one to x
until x is 100, prints the message [x i s 100] and then
waits until counter2 finishes and then sets x to 0.

<

(

I

(

(

(

Parallel Processing

The procedures can be defined as follows:

1 : bui Ld ' counteM

coun teM
make ' x :x + 1
i f :x = 100 Csay L~x i s 100] awai t :x = 0]
c o u n t e r l

1 : bui Ld ' coun te r2

counter2
awai t :x = 100
make ' y :y + 1
say :y
make 'x 0
counter2

In each procedure, the primitive awai t is used to stop
each process until a specific event occurs.

Now run the procedures by typing the following:

1: make 'x 0
1: make "y 0
1: coun te r l

/ (press <CTRL/X>)
2: counter2

/ Synchonization is also important when two procedures are
accessing the same list: for example add. t o . L i s t
is adding data to the list and t a k e . from. List

/' is extracting data from it.

At some instant the list looks like the following:

Cp o n m L]

If add. t o . L i s t requests to add ' k to the list
(making it Cp o n m L k])and t a k e . f r o m . L i s t

13.5

Parallel Processing

requests to delete ' p from the list (making it
Co n m I]) , there is a possibility of errors
occurring while amending the list.

Mutual exclusion is needed to ensure that a d d . t o . l i s t
and t a k e . f r o m . l i s t are not accessing the list at
exactly the same time. However, the two processes also
need to be synchronized so that, when the list is empty,
t a k e . from, li s t must wait until
add. t o . l i s t has added an item to the list.
The two procedures are:

1: bu i ld ' a d d . t o . l i s t

1: build ' take.from, list

1: bui Id 'my.program

my.prog 'x
begin [print :x]

will either print the global variable : x or crash, since

13.6

)

add . to .L i s t 'data. i tem
s ingle
make ' d a t a l i s t put las t : d a t a l i s t :data. i tem
mul t ip le

)
t a k e . f r o m . l i s t 'var.name
s ing le
i f emptyq : d a t a l i s t [mu l t ip le resu l t ' f a l s e]
make :var.name f i r s t : d a t a l i s t
make ' d a t a l i s t rest : d a t a l i s t
mu l t ip le \
resu l t ' t r ue

Problems with Local Variables }

A parallel process does not inherit local variables from
the process which started it off. Hence:

)

Parallel Processing

: x has no value in the new process. The following example
shows how you can get around this:

1 : bui Ld 'each

each 'action 'group

begin putLast putLast [each.do] :action :group

1: buiLd 'each.do

each.do 'action 'group
if emptyq :group Estop]
teLL first :group
run :action
each.do : a c t i o n r es t :group
Using these procedures, the following line will change the
colour of four turtles to red but will not change the
number of the turtle that process 1 is talking to:

1 : each CLt p i c k 90 f d p i c k 50] [WiLLiam
Henry Doug Las Fred]

A further subtle problem emerges when you want to allot
one command to each turtle, rather than giving a single
process to act on each turtle in turn. You might want to
do this if the process was going to be time consuming.

The previous procedure could be rewritten as:

each ' a c t i o n 'group
i f emq :group Estop]
beg in pL pL Eeach_do] : a c t i o n f i r s t :group

each : a c t i o n r es t :group
each_do ' a c t i o n 'name
teLL :name
run : a c t i o n

This will fail with the mystifying error "William does not
exist". Yet you know William does!

13.7

Parallel Processing

The mistake happens because each each_do receives the
unquoted word Wi l l i a m . f i r s t yields 'William,
but put Last strips the quote off again and
begi n attempts to execute:

begin L~each_do Csetc 10] W i l l i a m]

There are two possible remedies. One is to put quote in
the list as:

each Csetc 10] C 'Wi l l i am 'Henry 'Douglas ' F r e d]

The other is to join a quote onto each element as it is
extracted from the list, so changing line 2 of each to:

begin p i p i Ceach_do] : a c t i o n j o i n V f i r s t :group

Example of Parallel Processing

The file cage.def on your RM Logo disk is a simulation
of the lift example in Paul Chung's research paper 243*,
showing an example of synchronization with a 'bounded'
buffer.

* P.W.H. Chung. Concurrent Logo: a language for teachin
model applications; DAI Research Paper 243, Oct 1984;
in Logo Almanack 1, Part 2.

13.8

Parallel Processing

Summary of Primitives

awai t
Suspends process until a condition is ' t r u e

begin
Runs command at same time as calling process

m u l t i p l e
Turns parallel processing on

p a r a l l e l
Suspends calling process and runs list of commands

s i n g l e
Turns off parallel processing

whenever
When condition is true, Logo runs a given command

13.9

(

(

(

(

(

Multiple Turtles

Chapter 14
Using Multiple Turtles

RM Logo allows you to have up to eight turtles on your
screen at any time. You can use them to make the drawing
of several complex shapes simultaneously or to build up
moving pictures. This chapter explains how to do both
these things.

Drawing Complex Shapes Simultaneously

The following procedure spi n . squa re draws twelve
"spinning squares" at the centre of your screen using the
procedure square:

1 : bui Ld 'square

square

repeat 4 [f d 30 Lt 90D

1 : bu i ld 'spin.square

spin.square
repeat 12 [I t 30 square]
Up to now, if you had wanted to draw a spinning square in
each corner of the screen and one at the centre, you would
have had to draw them one at a time. However, using the
RM Logo multiple turtle feature you can have them drawn
simultaneously.

Type in the following procedure for example, and try it
out:

14.1

Multiple Turtles

1: build "smoother.squares

smoother.squares

)

tell
tell
tell
tell
tell
tell
spin.

1
2 setpos
3 setpos
4 setpos
5 setpos
[12 3 4
.square

[-50 50]
[50 50]
[-50 -50]
[50 -50]
5]

)

The t e l l command "selects" zero or more turtles by name
or number and applies subsequent commands to them until
you use another t e l l command. A new turtle is created at
the centre of the drawing area whenever you use t e l l
followed by a name or number of a turtle not yet known to
Logo.

)
The sixth t e l l is slightly different. It addresses all
five turtles and applies subsequent commands to all five
at the same time. Try it and see.

Turtles can be addressed by name, instead of by number, if
you wish. You can remove them from the list of active
turtles with the primitive vanish .

Each turtle can take on a different shape, a different
colour and a different pen colour. For example, change
smoother . squares to the following and try it again:

)
1: edit 'smoother.squares

smoother.squares
tell 1 setc 1 setpc 1
tell 2 setpos [—50 50] setc 2 setpc 6
tell 3 setpos [50 50] setc 3 setpc 7
tell 4 setpos [—50 —50] setc 4 setpc 8
tell 5 setpos [50 —50] setc 5 setpc 9
tell [12 3 4 5]
spin.square

14.2

<
Multiple Turtles

(
Each turtle can also take on its own speed and direction
of motion.

(

Drawing Different Shapes Simultaneously

The method described above is very effective if all the
shapes you want to draw are the same. If they are not,

(the resulting program is not very elegant.

When you want to draw different shapes at the same time,
the most effective method is to use parallel processes.
For example, suppose you want to draw a spinning square at
each corner of the screen and a "spinning triangle" at the
centre. You could do it with the following additional
procedures:

1: bu i ld ' p i c tu re

(

picture
tell 1 setc 1 setpc 1
tell 2 setpos C—50 50] setc 2 setpc 2
tell 3 setpos C50 50] setc 2 setpc 2
tell 4 setpos [-50 -50] setc 2 setpc 2
tell 5 setpos [50 -50] setc 2 setpc 2

(

(

(

(

parallel [[corners] [middle]]

1: bui Id 'corners

corners
tell [2 3 4 5]
spin.square

1: build 'middle

middle
tell 1
spin.triangle

(

14.3

Multiple Turtles

1: buiLd 'spin.triangle

spin.triangle

repeat 12 [rt 30 triangle]

1: buiId ' triangle

t r i ang le
repeat 3 Cfd 50 I t 120]
pi c t u r e creates all of the turtles and defines their
colours and positions. It then starts two separate
processes (corners and middle) in parallel, which
draw the spinning squares and triangle independently of
one another.

)

)

)

)

Creating Moving Pictures

One of the more interesting ways of using multiple turtles
is to create a moving picture, like that shown (without
motion!) below.

•A

•

14.4

The picture consists of the earth, sky, a tree, moving
birds and a cloud which moves from left to right. The
easiest way to build such a picture is to program each of
its parts as a separate procedure and then call them all
from one controlling procedure.

Multiple Turtles

For example:

1: bui Ld 'scene

scene

cs tell 1
cloud.shape
bi rd.shapes
create.earth.and.sky
create.tree
create.bi rds.and.f ly
create.cloud.and.move

By doing it in this way, an error in one part of the scene
will not affect the rest of the program. If you are
working in a group, it also means that each person or sub
group can design, build and debug one part of the program.

Let's look at the stationary parts of the scene first: the
earth, sky and tree. The earth and sky are easy; all we
need do is draw the "horizon" on the screen then fill the
areas below and above it with colour. The following
procedure will do this:

1 : bu i l d 'create.ear th.and.sky

create.earth.and.sky
setpc 4
setpos [-160 -50]
seth 90
forward 320
setpos CO -70]
f i l l 0 0

The instruction before the f i l l command is there because
you must move the turtle within the area before you can
f i 11 it with colour.

14.5

Multiple Turtles

Now, the tree can be drawn using the following procedures:

1: build 'create.tree

create.tree
setpc 6 \
setpos C-50 -50]
seth 0
forward 25
canopy
backward 25

")
1: build "canopy

canopy \
left 60
repeat 6 [bough right 20]
bough \
left 60

1: build 'bough

forward 7
twig
forward 7
twig
forward 5
backward 20

1: bui Id 'twig s

twig
left 45
forward 5
backward 5
right 90 \
forward 5
backward 5
left 45 \

14.6

}

Multiple Turtles

The birds require a little more thought. First create
four bird shapes:

1 : buiLd ' b i r d . s h a p e s

b i rd.shapes
dsh C b i r d l CO 0] L i f t C-10 6] [-8 4] 1-6 21

COOD C62] C84] C106]]
dsh Cbird2 CO 03 L i f t C-10 2] C-8 1] CO 0]

C81] C102]]

dsh Cbird3 CO 0] L i f t C-10 - 4] C-8 -23
C-6 -1] COO] C6-1] C8-2] C 1 0 - 4]]

dsh Cbird4 CO 0] L i f t C-10 - 8] C-8 - 5]
C -6 -3] COO] C6-3] C8-5] C 1 0 - 8]]

Position the turtles:

1: buiLd ' create.birds.and.fLy

create.bi rds.and.f Ly

teLL 2
setpos C50 50]
setc 3
teLL 3
setpos C100 70]
setc 3

To change the screen turtles to moving bird shapes, create
the procedure f Ly.

14.7

Multiple Turtles
)

)

1 : bu iLd ' f L y

f Ly "speed
setshape ' b i r d l pause :speed
setshape ' b i r d 2 pause :speed
setshape " b i r d 3 pause :speed \
setshape ' b i r d 4 pause :speed / 2
setshape ' b i r d 3 pause :speed / 2
setshape ' b i r d 2 pause :speed / 2
f Ly :speed

1 : bui Ld 'pause

pause ' n
LocaL ' x
repeat i n t :n [make "x : n]

A similar method is used to create a cloud.

1: buiLd "cLoud.shape

cLoud.shape
dsh [cLoud CO 0] L i f t [-30 -20] [-32 -15]

C-28-8] [-35 0] [-20 5] [-15 15] [-18 8]
[0 25] [5 20] [15 20] [20 5] [25 10] [30 -5]
[25-10] [15-20] [5 -25] [0 -20] [-5 -20]
[-20-35] [- 3 0 - 2 0]]]

Having created a cloud shaped turtle and called i t ' c Loud,
a final procedure is needed to move it across the screen.

1 : bu iLd ' c reate.cLoud.and.move

create.cLoud.and.move
teLL 1
sety 70
setshape 'cLoud
setdir 90
setspeed 15 x
begin [teLL 2 fLy 20] begin [teLL 3 fLy 30]

14.8

Multiple Turtles

The picture building procedures are now complete and you
can run them via the procedure scene.

Summary of Primitives

defineshape, dsh
Specifies the shape of the turtle

di r
Returns direction of movement

h i d e t u r t l e , ht
Hides turtle shape

near
Tells you if turtle is close to another turtle

nosense
Cancels sense command

s e t c
Changes turtle colour

s e t d i r
Specifies the direction the turtle moves

sense
Turtle senses presence of another turtle or change in
background colour

se t shape
Changes current turtle shape

se t speed
Gives turtle a constant speed

shape
Returns current turtle shape

shapedef
Returns shape as a list

shapes
Returns list of defined turtle shapes

s h o w t u r t l e , s t
Makes turtle visible

speed
Returns turtle's current speed

t e l l
Applies subsequent commands to named turtles

14.9

)
Multiple Turtles

)
toLd

Returns name of current turtle
to ldq)

Returns true if a turtle is obeying graphics commands
touch

Returns the background colour under the pen
vanish

Removes turtle from list of active turtles

)

)

I

)

)

)

)

14.10
)

Logo Microworlds

Chapter 15
Setting Up A Logo Microworld

You may want to restrict the facilities that Logo offers,
or extend them in some way, to produce a Logo learning
environment, or microworld. You could:

• Redefine some of the primitives to change their
effect. For example, you could redefine f orwa rd
so that forward 10 moves the turtle by 50 steps,
instead of 10.

• Change the colours used at start up.

• Treat some of your procedures as 'primitives' which
cannot be edited by users.

• Rename primitives for use with other languages.

• Create a news file to be displayed whenever someone
starts up the system.

Suppose, for example, you want to create a turtle graphics
microworld for young children such that:

• f means forward 50

• b means back 50

• L means Left 50

• r means r i g h t 50

You would first create the procedures f , b , I and r as
follows:

15.1

Logo Microworlds

1: bu i ld ' f

f

forward 50

1: bu i ld 'b

b

backward 50

1 : bu i ld • r

r

r igh t 50

1: bu i ld ' I

I
l e f t 50
Now when you type f and press <ENTER> for example, it
will have the same effect as:
forward 50
However, other users are still able to edit the new
procedures, rename them or even delete them. If you want
to stop them from doing this you should type:

1: bury Cf b r I]

This 'buries' the named procedures in your workspace so
that they now look like primitives. You can 'unbury' or
'expose' them at any time by typing:

1: expose [f b r L]

Suppose you now want to introduce children to the normal
primitives forwardandbackward, together with
the idea of inputs, but you want to redefine their range

15.2

Logo Microworlds

such that forward 10 and backward 10 both give
movements of 20 steps.

First edit f and b to take an input di s t ance and to
multiply it by two. As forward and backward
are to be hidden, a special prefix $ is used to
distinguish between Logo's original version of f orwa rd and
the modified version, f and b become:

1 : e d i t ' f

f ' d i s t a n c e

Sforward (: d i s t a n c e * 2)

1 : e d i t ' b

b ' d i s t a n c e

$backward (: d i s t a n c e * 2)

Now type:

1 : a l i a s ' f ' f o r w a r d
1 : a l i a s ' f ' f d
1 : a l i a s ' b 'backward
1 : a l i a s ' b 'bk
1 : bury Cf b fo rward f d backward bk]
This buries the new procedures as well as the original
definitions of forward and backward.
The commands:

1 : expose [f b fo rward f d backward bk]
1 : scrap [backward bk fo rward f d]

will cancel the aliasing and return forward, f d,
bk and backward to their usual use.

15.3

Logo Microworlds

You could use a similar approach to rename the basic
movement primitives for other languages. For example,
the following instructions allow the German words for the
primitives forward, backward. Left and
r i g h t to be recognised.

1 : a l i a s ' f o r w a r d ' vo rwaer t s
1 : a l i a s 'backward ' rueckwaer ts
1 : a l i a s ' l e f t ' l i n k s
1 : a l i a s ' r i g h t ' r e c h t s

Preserving The Microworld

Ideally, your microworld should exist when Logo is loaded.
The events which occur when Logo starts are shown in the
diagram below:

s ta r t

I
p r i n t news f i le

I i
execute command f i le

I)
the 1: prompt

The news file is named news. Lgo and it allows
information to be passed to users at the start of each
'session'. This information can be anything you want:
instructions on how to use the microworld or school news,
for example.

Now look at how you can create the turtle graphics
microworld described earlier. All you need do is make a
text file containing something like the following:

15.4

(

Logo Microworlds

define C[f] [forward 50]]
def ine CCb] [backwards 50]]
def ine [CL] [Lef t 50]]
def ine [[r] [r i g h t 50]]
bury [f b L r]

If the file containing the above is called t u r t l e . L g c then
it will be loaded if you start Logo with the MS-DOS
command:

Logo tu r t l e .Lgc

rather than just Logo. This will then create the
procedures f , b , L and r and make them appear as primitives
while Logo is running. If you want to use the standard
start-up file as well then add the line:

consuLt ' s ta r t .Lgc

to the file t u r t l e . Lgc.

The file s t a r t . Lgc contains the following:

• the filing primitives Load, s a v e , g e t , keep

• procedures giving the colour numbers by name

• the procedure copy which sends definitions of
procedures to the standard MS-DOS printer channel ' prn.

• the procedure pos which returns a list of the current
turtle's x and y coordinates

• the procedure f i nd which takes two inputs. The first
is an object and the second a list, f i nd returns a
list pointing to the occurences of object in the list.

• the procedure to Ldq which takes an input ' name and
returns * t rue if : name is a turtle being addressed by
the current process, and ' f a l s e otherwise.

(

15.5

Logo Microworlds

• the definitions of the shapes t r a i n , coach, c a r ,
b i c y c l e

• the procedure dump which prints out the contents of
all global variables.

Any of these files, including news. Lgo and s t a r t . Lgc
can be edited outside Logo using a text editor.

You can also use Logo's editor to change them. First
type:

1 : Load ' e d i t f i L e . d e f

and then type ed i t f i L e and the name of the file to
edit. For example:

1 : e d i t f i l e ' s t a r t . L g c

You can also use the Logo editor outside Logo. To do this
type proword and the name of the file to be edited after
the MS-DOS drive prompt.

Summary of Primitives

a l i a s
Allows another name to refer to a procedure. The new
name may be the name of a primitive,

bury
Buries procedures so that they cannot be edited,
listed, saved, renamed or deleted

de f ine
Defines a procedure in the form of a list

expose
Unburies procedures

rename
Renames a procedure (not a primitive)

15.6

Extensions to Logo

(

Chapter 16
Writing Extensions To Logo

Introduction

/ This chapter is about extending Logo to communicate with
devices beyond the control of the standard language.

t An extension is a short machine code program which will
let you do this. For example, a floor turtle is a small
robot which trundles around the floor in response to Logo
commands. You will need to load an extension into RM Logo
if you want to drive a turtle with Logo commands given at
the keyboard. This is called a turtle driver. Anyone can
load a driver if it is ready-made, but you may want to
write your own. You will also need to write your own
extension to use Logo to control a device you've made
yourself.

•

V

(

Following a general description of floor turtles, the
first sections of this chapter explain how to load a ready
made turtle and other extensions.

/ The requirements and explanations to prepare and write
your own turtle driver or extensions are given in the
remaining sections of the chapter.

Floor Turtles

A floor turtle is a small robot which responds to the Logo
commands forward, backward, Left and r i g h t .
It also has a pen which responds to Lift and d rop. It
sometimes has other features like a hooter, flashing
lights, or touch sensitive switches.

16.1

Extensions to Logo
)

With young children it is often very helpful to introduce
the floor turtle before going on to the screen turtles.
To do this, you need to add a program which can convert
information about the primitive being run on Nimbus
(forward, backward and the number given as
argument) into motor movements. This program is called a
turtle driver.

If you are using one of the common commercially sold
turtles, Research Machines may have supplied a driver for
it. If you are building your own turtle or using one for
which you can't get a ready-made driver, you will have to
write it yourself.

Loading a Ready-made Turtle Driver

Give the command:

d r i v e r ' a b c d . l g x
i

This will unload any driver that is loaded already, and
load the file ABCD.LGX as a driver. To load the driver
without loading another, use the command nodri ver .
It has no inputs.

While a driver is loaded the commands forward,
backward L e f t , r i g h t , L i f t anddrop
communicate with the floor turtle as well as with any
screen turtles. If you run both screen turtles and a
floor turtle at the same time, then the floor turtle will
move before the screen turtles. It also becomes legal to
give these commands without first giving any S
cLearscreen or teL L commands.

j

16.2

•

Extensions to Logo

Loading Ready-made Extensions

An extension is a short machine code program which lets
you send signals to, and receive signals from, a feature
of Nimbus which Logo cannot reach in its standard form.

The b Load (Binary LOAD) command takes a word
or a list as input, so:

1 : b load ' a b c d . l g x

loads the procedures defined in the extension abed. Lgx.

1 : b load [a b c d . l g x e f g h . l g x]

loads the procedures defined in the extension files
abed. Igx andefgh . Igx.

You may have a number of extensions in Logo at the same
time. To delete an extension give the command:

1 : unbload ' a b c d . l g x

To find out the names of the procedures that the
extensions define (which may not be the same as the
filenames) give the command:

1 : say bloaded

Preparing to Write your own Turtle Driver or Extensions

To write a driver or extension you will need to
understand:

• the way the 80186 chip works

• an assembly language

• an editor, an assembler and the
MS-DOS utilities LINK and EXE2BIN.

16.3

Extensions to Logo

The steps in writing a machine code extension are:

1. Use an editor to create the source file, for
example: ABCD.ASM

2. Use an assembler to create an object file, for
example: A:MASM ABCD

3. Use LINK to convert the object file into
M$-DOS's load file format, for example: A:LINK ABCD

4. Use EXE2BIN to convert the file to binary format,
for example: A:EXE2BIN ABCD

5. It has mnemonic value to rename the file, for example:
REN ABCD.BIN TILLY.LGX

The file TILLY.LGX is now ready to be loaded into Logo.

If you want to invoke the floor turtle driver, load the
two registers that the floor turtle routines checks first
(AX and BX) and issue interrupt 0D4. If your floor turtle
routine is likely to use registers SI or DI and you are
treating them as reserved, then you must preserve them.
Remember that floor turtle function codes run from 0 to 7
inclusive; yours should start at, say, 16 to allow a
little room for RM functions to expand.

Writing a Floor Turtle Driver

The driver or extension should be a binary file in the
form of a far procedure, ending with a far return
instruction. The segment registers are all reserved. If
you are calling the floor turtle from an extension
procedure then registers SI and DI may also be reserved.
An error exit is made by issuing the INT D2 hex
instruction.

16.4

Extensions to Logo (

When the driver is invoked, the BX register is set to
a function number and the AX register to the value of
the input, if there is one; be warned that this may be
negative.

The significance of the number in BX is:

0. Turtle driver is about to be unloaded. Turn off
lights etc.

1. Turtle driver was just loaded. Turn on lights etc.

2. Forward command. Distance in AX

3. Backward command. Distance in AX

4. Left command. Angle in degrees in AX

5. Right command. Angle in degrees in AX

6. Pen up

7. Pen down

(

Writing Your Own Extensions
(Extensions are very flexible; they can accept one or more

numbers, words or lists as input and they can return a
result which may also be a number, word or list. There is
a restriction that neither input nor output lists may
contain sublists, and input and output numbers must be
integers in the range -32,768 to 32,767. They can invoke
the turtle driver, if one is loaded, or the Logo error
handling routine.

16.5

Extensions to Logo

Format of Extension Files

Your extension should be a binary file in the form of a
far procedure, ending with a far return instruction.

Before the code itself, there must be a header giving the
name of every primitive in the extension. The names
should be made of contiguous lower case characters; the
name must be terminated with a null byte.

Immediately following this there should be one byte giving
the arity (number of inputs) of the procedure, and
following that two bytes giving the offset from the start
of the extension to the start of the code for the
primitive. The entire header should be terminated with a
null byte.

For example:

db 'mouse' ; name

db 0 ; t e rm ina tes name

db 0 ; has no i n p u t s

dw o f f s e t ; o f f s e t of code s t a r t

db ' b u t t o n '

db 0

db 1 ; has one i npu t

dw o f f s e t dobu t ton

db 0 ; t e rm ina tes header

is a valid header for an extension defining the primitives
mouse and bu t ton , where mouse has no input and
bu t ton has one.

16.6

Extensions to Logo

Inputs

If you want to read inputs then you must not disturb the
DI register until you have read all the inputs you want.
It's your responsibility to make sure the number of inputs
you read is not greater than the arity declared in the
header.

To read an input invoke interrupt 0D0 hex. This will
alter the content of the DI, AX and BX registers. Leave
DI alone. The BX register contains type information to
allow you to make sense of the AX register, as follows:

JBX AX means

2 - Input is a list.

(See below for how to scan it)

0 N N is a number

1 SSSS ES:AX is a null-terminated string of
characters; the input was a word.

To scan a list invoke interrupt ODl hex before invoking
interrupt 0D0 again. The BX and AX registers will give
you the first, or next, element of the list as follows:

BX AX means

1 — Element is a sublist. It cannot be
read but it can be stepped over with
another interrupt 0C1.

0 N Number, as above

1 SSSS String, as above

- 1 -- End of list

16.7

Extensions to Logo

Returning Results

Even if your extension does not return a result you should
be careful what is in the BX register when you return from
your procedure with a far return instruction. It is
interpreted as follows:

BX (on exit) result

0 or any number Your primitive does not return a result
not shown here

1 The number in AX

2 The word formed from the null-terminated
character string at DS:AX

3 The word ' f a L s e if AX is zero and the
word ' t r u e otherwise

4 A list built up as explained below

Returning Lists

To return a list, first clear the SI register and issue
interrupt 0D3. The SI register is reserved from now on.
The procedure will now return an empty list if you put 4
in BX and return. To append elements to the list load AX
and BX as for exit (BX will always be 1, 2 or 3) and issue
another interupt 0D3. To end the list, put 4 in BX and
return with a far return instruction.

Error Exit

If you encounter an error, for example someone using your
extension has supplied an inappropriate input, then use
MS-DOS function 9 (put string) to display a message if
you want, then invoke interrupt 0D2. This is the Logo
error exit. It can be caught with catch ' e r r o r
though this will not suppress the message.

16.8

J

RM Logo

Part 2 Reference

Logo Primitives

The following pages describe the Logo primitives in
alphabetical order, one to a page. The primitive # is the
final primitive to be described.

Most descriptions include an example of how to use the
primitive. Remember that an indented Logo line indicates
that it is a continuation of the line above.

Logo Keywords and Signals

The Logo keywords:

case, d e f a u l t , u n t i l , t r u e , fa lse

are listed following the special characters.

The Logo signals (things Logo catches) are explained
following the Logo keywords. The signals are:

cancel , e n d f i l e , e r r o r , fence,
touch, t o u c h t u r t l e , escape

catch and throw primitives make use of these
signals to change the flow of control. See Chapter 5 in
the Concepts Section of this book.

Special Logo Characters

The special Logo characters:

: ; : - [] ' () \ * + - / l t ~ $ # < > < - *

are documented at the end of the Logo primitives.

Referenced

RM Logo

Inputs to Logo Primitives

Where inputs are required, these are shown in italics.
For example:

add number number
f i r s t nwl

The words used to define these inputs are as follows:

a,b
An expression which is ' t r u e or ' f a Lse

angle
An angle specified in degrees

filename
A quoted word identifying a file unambiguously
and including any file extension.

list

integer

number

nwl

word

One or more nwh enclosed by square brackets, or
the empty list C]

An integer number

A number, integer or fraction

A number, word or list

A quoted word: any set of alphanumeric or non-
special characters preceded by ' . Special characters
must be prefixed with\.

In a few instances, an unquoted word may also be
accepted. These are not detailed explicitly in this
book and their use is discouraged in order to keep
words in the same form.

Any of the above definitions can be replaced by an
expression or procedure, if the replacement returns an
equivalent result.

Referenced

(

(

(

<

(

(

(

(

(

(

(

(

RM Logo

abs number

Remarks

Returns the absolute value of the input (including a zero
if the input is zero).

Examples

1 : p r i n t abs —2
2
1 : p r i n t abs 2
2

Reference.1

RM Logo

acos number

Remarks

Returns the arccosine of number as an angle in the range
180 to 0.

Examples

1: p r i n t acos —1
180
1: p r i n t acos 0.5
60
1: p r i n t acos 1
0

Associated Primitives

a s i n , atan

Reference.!

I

add number number
+

RM Logo

Remarks

Returns the sum of its inputs.

Examples

: say add 10 2
2

: say 10 + 2
2

: make "x 8
: say add :x 1

(

Reference.3

RM Logo

alias wordl wordl

Remarks

Gives the procedure named by wordl, a new name wordl.
The original name will still be understood. Any editing on
wordl will change wordl also.

This is the only way to re-use the name of a primitive.
If wordl is the name of a primitive then calls to wordl
will actually invoke wordl.

Example

a l i as ' s i x . s i d e d . f i g u r e 'hexagon

Reference.4

RM Logo

amongq nwl list
memberq

Remarks

Returns the value ' t rue if nwl is an element of list,
otherwise it returns " f a l s e . Differences between upper
and lower case are ignored.

Examples

1: say amongq 'dog Ccat dog hamster rabbit]
true

1: say memberq 'pig Ccat dog hamster rabbit]
false

The following example tests if the contents of I i s 11 are a
subset of Li s t 2 :

1: bui Id 'subsetq

subsetq ' l i s t l ' l i st2
i f emq : l i s t l [r esu l t ' t r u e]
i f amongq f i r s t : L i s t l : L i s t2

[r esu l t subsetq rest : l i s t l : l i s t 2]
[r esu l t ' f a l s e]

Hence:

1: print subsetq [toast jam][toast eggs jam]
' true
1: print subsetq [toast jamHcheese toast eggs]
' f a l s e

Reference.5

RM Logo

and

Remarks

Commands connected by and are run in sequence, and is
optional.

Example

1 : repeat 4 [forward 50 and Left 90]

^ .

Reference.6

I

RM Logo

appfile filename

Remarks

Tells Logo to open the file filename for writing. The
current contents of the file are preserved and new data is
appended to the end of it. Returns ' t rue if the file is
opened successfully and ' f a l s e if it is not.

If you try to append to a non-existent file, a new file
will be created.

Example

The following command tries to open the file da taf i le as
an 'append file'. If it manages to do this the program
continues, otherwise it prints the message 'unable to open
append file' and stops.

unless app f i l e ' d a t a f i l e [say [unable to open
append f i le] escape]

Associated Primitives

c l o s e f i l e , o u t f i l e , i n f i Le

Reference.7

RM Logo

arcl number angle

Remarks

The turtle draws an arc to the left, number
specifies the radius of the arc, angle is its size in
degrees.

If the radius is negative, the centre of the arc is to the
right of the turtle. If the angle is negative, the turtle
moves backwards instead of forwards.

Example

To draw a semi-circle of radius 25 steps to the left:

1 : cs
1 : a r c l 25 180

Associated Primitive

a r c r

Reference.8

)

RM Logo

arcr number angle

Remarks

The turtle draws an arc to the right, number specifies
the radius of the arc, angle is its size in degrees.

If the radius is negative, the centre of the arc is to the
left of the turtle. If the angle is negative, the turtle
moves backwards instead of forwards.

Example

To draw a circle of radius 25 steps to the right:

1: cs a r c r 25 360

Associated Primitive

a r c L

Reference.9

RM Logo

asin number
3

Remarks

Returns the arctangent of number as an angle in the range
—90 to 90 degrees.

Examples

1 : p r i n t a s i n —1
^?0

1 : p r i n t a s i n 0
0

Associated Primitives

acos , a tan

Reference.10

I

RM Logo

ask nwl

Remarks

Prints nwl on the screen without outer brackets but with a
question mark. Everthing that is typed from the keyboard
in response is returned as a list. The response is ended
by <ENTER>. The <ENTER> is not recognized as
part of the response.

Example

1: make 'name ask [What is your name]
What is your name? Cathy

1: print :name
[Cathy]

Associated Primitives

key, keyq, read List

Reference.il

http://Reference.il

RM Logo

assert wordl word! nwl

Remarks

Gives wordl the property wordl with value nwl.

Examples

1: assert 'whiskers 'species 'cat
1: assert 'patch 'species 'dog
1: assert 'patch 'colour [black and

Associated Primitives

asserted, assertedq, assertions, clas
deny, objects

Reference.12

<
V

\

RM

asserted wordl word!

Remarks

Returns the value held by the property wordl of the object
wordl.

Example

1: assert 'rover 'breed 'Labrador
1: say asserted 'rover 'breed
Labrador

Associated Primitives

assert, assertedq, assertions, classified,
deny, objects

(

RM Logo

assertedq wordl wordl

Remarks

Returns ' t rue if the object wordl has the property wordl
and returns ' f a Lse otherwise.

Example

a s s e r t e d q can be used to anticipate errors when you are
about to use a s s e r t e d

1: assert 'GWR 'abbrev ia t ion.of [great
western ra i Iway]

1 : p r i n t assertedq 'GWR 'abbrev ia t ion.o f
' t r ue

Associated Primitives

asser t , asser ted, asser t ions, c l a s s i f i e d ,
deny, objects

Reference.14

RM Logo

<

<

(I

(

(

(

(

(

<

(

assertions word

Remarks

Returns a list consisting of one or more sub-lists. Each
sub-list consists of a property of the object word,
together with its associated value.

Example

1: say assert ions ' rover
[species dog] [breed Labrador] [colour golden]

Associated Primitives

(
assert, asserted, assertedq, classified,
deny, objects

Reference.15

RM Logo

atan number

Remarks

Returns the arctangent of number as an angle between —90
and 90 degrees.

Examples

1 : say atan 1
45

1 : say a tan 0.5
26.565051177078)

!

Reference.16

)

()

RM Logo

await a

Remarks
(The process which issued the awai t will be suspended until

the expression a becomes true. If a uses a global
variable, awai t can be used by a process to delay another.
If a is a procedure, it will be run at least once.

/ Examples

Suppose ' x is a global variable, initially set to 0. Two
processes, coun te r l and counter2 , access it. coun te r l
adds 1 to ' x until ' x is 100, prints a message and then
waits until process2 does its work resetting ' x to 0.

(

(

(

(

(

(

(

Associated Primitives
begin, parallel, whenever, single, multiple

1: build 'counterl

counterl
make 'x :x + 1
if :x = 100 [say [x is 100] await :x = 0]
counterl

1: bu i ld 'counter2

counter2
await :x
make 'y
say :y
make 'x
counter2

1: make
1: make

=

:y

0

•x

'y
1: parallel

100
+ 1

0
0
[[counter1][counter2]]

Reference.17

RM Logo

backward number
bk

Remarks

Moves the turtle number steps backwards. If the turtle's
pen is down, the turtle leaves a trace of its path. If
number has a negative value, the turtle will move
forwards.

Example

1 : backward 50

Associated Primitive

forward \

)

Reference.18

RM Logo

begin list

Remarks

The command list is run in parallel with the current
process. It is usually used to start another process off
from within an existing process.

Example

begin CteLL 5 repea t 4 [forward 50 Left 90]

Associated Primitives

paraLLeL, run

Reference.19

RM Logo

bg

Remarks

Returns the current background colour, which will always be
a number in the range 0 to 15. The colour numbers are
listed under the primitive co Lour.

Examples

1 : say bg
0

1 : setbg 2
1 : cs
1 : say bg
2

Associated Primitive

setbg

)

)

Reference.20

I

RM Logo

O
bload filename

(

Remarks

Loads the extension in filename into Logo's workspace.
The procedures in this extension then become accessible

/ from Logo.

Example

1: bLoad ' c o n t r o l . L g x

Associated Primitives

bloaded, unbload

(

(

(

(

(

Reference.21

(

RM Logo

bloaded

Remarks

Returns a list of procedures defined by any extensions
currently loaded.

Example

1 : p r i n t bloaded
[peek poke epson]

Associated Primitives

bload, unbload

Reference.22

)

RM Logo

both a b

Remarks

Returns ' t rue if both the expressions a and b are ' t r u e ,
and ' f a l s e otherwise.

The table below shows how both works for different values
of a and b.

a b both a b
' f a l s e ' f a l s e ' f a l s e
' f a l s e ' t r u e ' f a l s e
' t r u e ' f a l s e ' f a l s e
' t r u e ' t r u e ' t r u e

both does not evaluate its 2nd input if the 1st is ' f a l s e .

Examples

1 : say both (1 = 1) (2 = 2)
t r u e

1 : say both (1 = 2) (2 = 2)
f a l s e

1 : say (1 = 2) & (2 = 2)
f a l s e
The following example procedure tests for integer square
roots and avoids a failure if the input is negative:

1 : b u i l d ' has_exact_square_root

has_exact_square_root ' n
r e s u l t (: n>=0) & (sq t :n = i n t sqt :n)

Reference.23

RM Logo

branch a list case b list

Remarks

This statement is a set of condition and list pairs. The
conditions are called cases .

Logo looks to find the first case that is true. The list
following that case is run and the branch statement is
then finished. If a result is returned from the list then
it is the result of the branch statement.

If the final case is the keyword d e f a u l t and none of the
other cases proved true, then the final expression will be
evaluated and run.

Example

1: bui Id 's ign

sign 'x
branch :x>0 [resuLt ' p o s i t i v e] case :x=0

[r esu l t "zero]
defau l t [r esu l t 'negat ive]

Reference.24

RM Logo

bug wl
bug list

Remarks

Whenever the value stored in the named variable(s) changes,
Logo print a message, word or every variable named in the
list must exist before you use bug.

Example

1 : bug 'name

1 : bug Cdog c a t]

Associated Primitive

unbug

Reference.25

RM Logo

build word

Remarks

Invokes the editor. If word already exists then the
definition appears in the edit window: otherwise only
word appears. It is an error to leave the editor and
return only the word.

Please see chapter 4 for more details.

Example

If you wanted to create the procedure square, you would
type:

1: bui Ld 'square

and the edit window would appear:

FKEYS

normal

shift

alt

MOV

00
E0
DEL

00
0D
CMD

00

<LR>

char

word

line

A U D T

line

page

text

COMMANDS *

Swap case

Ins marker

Go to mark

[menu

of

more]

square

Associated Primitive

ed i t

Reference.26

I RM Logo

(

<

(

i

(

(

(

(

bury wl

Remarks

Allows you to 'bury' procedures in the workspace so that
they cannot be listed, edited, saved, renamed or deleted.
The buried procedures will then have the appearance of
primitives.

Examples

The following example lists the names of all procedures in
the workspace then buries some of them.

1: say t i t l e s
square t r i ang le rhombus hexagon

1: bury [square t r i ang le hexagon]

1: say t i t l e s
rhombus

Associated Primitive

expose

(

(

(

(

Reference.27

RM Logo

butfirst nwl
bf
rest

Remarks

Returns all but the first element of nwl, which can
a number, word or list.

nwl cannot be empty.

Examples

1: say b u t f i r s t 'cats
ats

1 : say rest CtortoisesheLL cats are g
cats are great

Associated Primitives

b u t l a s t , f i r s t . Last

Reference.28

(RM Logo

(

butlast nwl
(bl

<

(

Remarks

Returns all but the last element of nwl, which can be a
number, word or list.

nwl cannot be empty.

Examples

1: say butLast 'cats
cat

1 : say butLast CtortoisesheLL cats are great]
tortoisesheLL cats are

Associated Primitives

f i r s t . Last, b u t f i r s t , butLast

(

(

(

(.

C '
Reference.29

RM Logo

catch word list

Remarks
The expression list is evaluated and run. If a t h row
command with the label word occurs while running list,
control returns immediately to the command following
ca tch .

catch word list

Please see the section 'Throwing and Catching Control'
in Chapter 5.

The system throws several signals which can be caught by
ca tch . These are thrown by c a n c e l , . e n d f i l e ,
e s c a p e , e r r o r , t ouch , and t o u c h t u r t l e .

)
word can be one of the system names, such as e r ro r.

Example

catch ' t roub le [explore]

If exp l o r e , or anything it calls, contains the command
throw ' t r o u b l e , then no further lines of exp lo re are run.
Instead, Logo continues with the command following ca tch .

Associated Primitive

throw

Reference.30

•

)

>

RM Logo

centre
center
ct

Remarks

The turtle is moved to its 'home' position. This is at
the centre of the screen and facing upwards (a heading of
0).

When a process issues a cent re command, only the turtles
addressed by that process are affected.

Reference.31

RM Logo

classified word

Remarks

Returns a list of objects which have the property word.

Example

1: print classified 'species
[rover whiskers patch fido joey]

Associated Primitives

assert, asserted, assertedq, assertions,
deny, objects

)

Reference.32

)

)

)

)

)

)

)

)

)

(
RM Logo

()

(

(

(

(

(

(

(!

(

clean
cl

Remarks

Everything except the turtle shapes disappears from the
screen. The turtle shapes are not moved.

: cs
: forward 50
: Left 90
: forward 50
: cl

(

(

(

(

(

Reference.33

RM Logo

cleantext
ctx

Remarks

Erases all text on the screen, returning the cursor to
the top left of the text area. This will not affect the
graphics area if you are in graphics mode.

graphics mode text mode

Reference.34

KM Logo

clearscreen
cs

Remarks

This clears the screen ready for drawing with a turtle.
The bottom six lines are for text; the remainder of the
screen is the drawing area. Everything on the screen other
than the turtle disappears.

When a process issues a c Learscreen command, only the
turtles addressed by that process are moved to the centre
of the screen.

If c Learscreen is used for the first time, only one turtle
appears. It's name is seymour and is turtle number one.

Examples

1: forward 50
1: Left 90
1: cs

Reference.35

RM Logo

closefile filename

Remarks

Tells Logo to tidy the file filename and close it.
Returns ' t rue if the file was closed successfully and
' f a l s e otherwise.

Examples

The following line tries to close a file. If it manages
to do this, it prints ' end of r u n ' , otherwise, it prints:
'unable to close output f i l e ' and stops.

1 : i f c l o s e f i l e ' o u t f i l e . d a t Csay Cend of run
Csay Cunable to close output f i l e] stop]

Associated Primitives

a p p f i l e , i n f i l e , o u t f i l e

Reference.36

(
RM Logo

colour
color

(

(

(

()

(

(

(

(

Remarks

Returns the colour of the turtle as a number 0 to 15. The
numbers associated with the colours are:

Number

Example

Colour

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1: s e tc 3
1: say colour

black
dark.blue
dark.red
purple
dark.green
dark.cyan
brown
light.grey
dark.grey
light.blue
light.red
magenta
light, green
cyan
yellow
white

Associated Primitive

se tc

(

Reference.37

RM Logo
)

consult filename

Remarks
)

Executes commands previously written (dribbled) to the file
filename.The commands are not visible on the screen as
Logo executes them.Control returns to the keyboard when
either an error occurs or the end of the file is reached.

The file can be created from Logo using d r i bb Le or file
primitives, and from outside Logo using a text editor.

Example \

1: consu l t ' t u r t l e s l

Associated Primitives

d r i b b l e , nodr ibb le , replay \

')

)

J

)

Reference.38

)

(
RM Logo

o
cos angle

(

Remarks

Returns the cosine of angle, angle is in degrees.

/ Example

1: say cos 60
/ 0.5

(

(^

(

(

(

(

(

(

(

Reference.39

RM Logo

count nwl

Remarks

Returns a number as its result:
• If the input is a number, count returns the

number of digits to the left of the decimal point
• If the input is a word, count returns the

number of characters in the word
• If the input is a list, count returns the

number of elements in the list

1: say count 12.223
2
1: say count 'Jeeves
6
1: say count [number of words in list]
5

The following example deletes an element of a list using
count to check the value input:

1: bu i ld 'deletes. i tern

deletes.item 'n 'list
if :n > count : List [say [n is too big] escape]
if :n = 1 [result rest :list]
result putfirst first : Li st delete.item :n—1

rest : list

Hence:

1: print delete.item 3 [the cat sat on the mat]
[the cat on the mat]
1: print delete.item 8 [the cat sat on the mat]
n is too big.

Reference.40

)

)

)

Examples

)

)

)

)

)

)

RM Logo

('

cursor
(

Remarks

Returns a list of two numbers which are the screen line and
column number of the cursor position.

Example

/ 1 : p r i n t cursor

C20 16]

Associated Primitive

setcursor
(

(.

(

(' ' ' ' .. ' '

(

(. '

Reference.41

(

RM Logo

)

define list

Remarks

Defines a procedure in the form of a list. Each line of
the procedure is an element of list.

\
The first element is the title line of the defined
procedure. If there is no procedure with this name, a new
one will be created. If this is already the name of a
procedure, the new definition will replace the existing
one.

Example

The following command defines a procedure which draws a
house shape. It uses two other procedures which draw a
square and a triangle.

)
1: def ine [[house ' s ide] [r i g h t 90]

[square : s i d e] [Left 60] [t r i a n g l e : s i d e]]

Associated Primitive

t e x t »

)

Reference.42

(RM Logo

defineshape list
dsh

Remarks

Defines a turtle shape in the form of a list. The first
element of list is the name of the shape; other elements
are the coordinates of the vertices of the shape. These
vertices are joined to form the shape. Use Lift if you
require a break in the line of the turtle shape.

The turtle will rotate about its centre. The centre of
the new turtle shape is always the centre of the previous
turtle shape'.

Examples

1: dsh [box [-8 -83 [-8 8] [8 8] [8 -83 [-8 -S3 3

1: defineshape [cross [-10 -103[10 103
Lift [-10 103[10 -1033

1: setshape 'box
1: setshape 'cross

Although neither example contains [0 0], each turtle will
rotate about its centre.

(

Reference.43

RM Logo

deny wordl wordl

Remarks

Deletes the property wordl and its value for the object
wordl.

Examples

1: deny 'fido 'species
1: deny 'fido 'type

Associated Primitives

assert, asserted, assertedq, assertions,
classified, objects

)

)

)

Reference.44

RM Logo

dir

Remarks

Returns the direction in which the turtle is moving (its
movement heading, not its drawing heading).

Examples

1 : cLearscreen
1: te lL 1
1 : se td i r 45
1: say d i r
45

t e L L is not necessary here if you already have a turtle.
However, if you haven't, the s e t d i r command will cause an
error. If you set a negative direction, di r will give you
the positive equivalent. For example:

1: setdi r —45
1 : say d i r
315

Associated Primitive

se td i r

Reference.45

RM Logo

directory word

Remarks

Returns directory information from the disk in the form
a Logo list, word is used to select the information
required and depends upon the operating system.

Example

Under MS-DOS the following command will return a
list of all files on disk B with the extension .LGP

1 : say d i rec to ry 'b\ : * . lgp

Note how the \ character is used to tell Logo to interpret
the following character as normal text.

Reference.46

RM Logo

(

divide number number
< div

i '

> Remarks

Returns the number that results from dividing the first
/ input by the second.

Examples

1: say d iv ide 13 2
6.5

1: say 1 2 / 2
6

(

o
(

(

(

c
(

(

RM Logo

do list until a
)

Remarks

The command list is repeated until the expression a
becomes ' t r u e , list is carried out at least once.

Examples

1: do [forward 100 Left 90] u n t i l keyq

The following procedures find the first prime number after
the number input. It assumes that the number input is a
prime number.

1: bu i ld ' f i n d . f i r s t . p r i m e . a f t e r *

f i n d . f i r s t . p r i m e . a f t e r 'n
do [make 'n :n+1] u n t i l primeq :n
resu l t :n

1: bui Id 'primeq

primeq "n

resu l t primeq.sub 2 sqt :n :n

1: bu i ld 'primeq.sub

primeq.sub ' i ' j 'n
branch rem :n : i =0 [r esu l t ' f a l s e]

case : i > : j [r esu l t ' t r u e] \
d e f a u l t [r e s u l t is .pr ime.sub : i +1 : j :n]

)

)

Reference.48

http://ind.fi
http://ind.fi

RM Logo

dribble filename

Remarks

Subsequent commands will be written (dribbled) to the file
filename.

dri bb Le is mainly used when you need a record of
everything typed. Hence, the file is opened in append
mode, preserving any existing contents.

Example

1: dr ibble " sess ion

Associated Primitives

consu l t , d r i bb leq , nodr ibb le , replay

Reference.49

RM Logo

dribbleq

Remarks

Returns ' t rue if everything you type is being recorded in
a dribble file, otherwise it returns ' f a l s e .

Example

1: if dribbleq Csay [hello I am watching you]]

Associated Primitives

consu l t , d r i b b l e , nodr ibb le , repLay

Reference.50

RM Logo

(

driver word
(

Remarks

Loads a floor turtle driver contained in the file
specified by word providing that such a driver exists.

(There can only be one floor turtle driver present in Logo
at any one time.

(Please see chapter 16 for details.

Associated Primitive
(

nodriver

(

(' \

(

(

(

(:

(

(

Reference.51

(i

RM Logo

drop

Remarks

Replaces the turtle's pen on the paper so that it draws as
it moves. This primitive is the opposite of L i f t .

Examples

The following procedure draws a dotted line:

1 : buiLd 'dot ted.L ine

dotted.Line 'Length 'dot.size 'pen.state
if :dot.size >: Length Cfd : Length stop]
fd :dot.size
if :pen.state CLiftHdrop]
dotted.Line :Length —:dot.size :dot.size

not .-pen.state

Hence:

1: drop
1 : dot ted.L ine 50 8 ' t r ue

Associated Primitives

L i f t , upq

)

3
Reference.52

)

)

)

)

)

)

1
/

RM Logo

edit word

Remarks

Invokes the editor and places the definition of word into
the edit window. It is not possible to edit a procedure
or primitive which does not exist, ed i t cannot be used to
create a procedure or primitive (use bui Ld).

Example

If the procedure squa re exists and you type:

1: ed i t 'square

then the procedure appears in the edit window.

FKEVS

normal

shift

alt

MOV

00
00
DEL

00
OD
CMD

SB

* L R ^

char

word

line

* U D T

line

page

text

COMMANDS*

Swap case

Ins marker

Go to mark

[menu

of

morej

square
repeat 4 [r i g h t 90 forward 50]

Associated Primitive

build

Reference.53

RM Logo

editlist list

Remarks

Displays the elements of list in the edit window. The
list is not broken down into sub-lists (as it is using
ed L i s t) . Once in the edit window, the elements of the
list can be edited like any other text.

On leaving the editor, the list is returned in the same
form it took before going into the editor — except for any
amendments made in the editor.

Associated Primitive

e d l i s t

Reference. 54

(
RM Logo

(

edlist list
{

Remarks

Displays the elements of list in the edit window. Once in
the edit window, the elements of list can be edited like
any other text. Outer brackets are not displayed.

When you exit the editor with <ESC>, ed I i s t returns a
list of L i s t s. Each of the lists represents one line of

\

the edit window.

On exiting the editor with <F10> and < A > , ed Li s t does a
throw cance l . If this is not caught then any editing you
have done will be ignored.

Example

1 : bui Ld 'wp

wp ' t e x t
catch 'cancel [make : tex t e d l i s t

i f valueq : t e x t [v a l u e : t e x t] [[]]]

1 : wp ' s to ry

This is a simple word processor! If s t o r y exists you can
change its content. If it doesn't exist then ed l i s t is
called with an empty window. If you cancel the edit, no

/ assignment is made to s to ry.
V

Associated Primitive

e d i t l i s t

(

(

Reference.55

RM Logo

eequalq nwll nwll
eeqq

Remarks

Returns ' t rue if nwll and nwll are exactly equal and
' f a l s e otherwise.

• Two numbers are considered exactly equal if they
differ by 1/2000000 or less.

• Words are considered equal only if they contain the
same letters in the same order and in the same case.

• Lists are considered equal if their elements are
exactly equal and in the same order.

If nwll and nwll are of different types the result will
always be ' f a l s e .

Examples

1 : say eequalq 1 2
f a l s e

1 : say eeqq 1 1
t r u e

1: say 'HOUSE == 'house
false

Associated Primitive

equalq

Reference.56

(RM Logo

either a b

Remarks

Returns ' t rue if either or both its inputs are true and
1 f a Lse otherwise (the 'inclusive OR' function).

The table below shows how it works for different values of
a and b.

a
'false
'false
' true
'true

b
'false
' true
•false
' true

ei ther ab
'false
' true
'true
'true

If the first input is ' t r u e the second is not evaluated.

Example

The following procedure is useful when you want to check
whether a user has typed a yes or no answer:

1: bu i ld 'ver i fy.answer

veri fy.answer :x

resu l t e i ther :x ='yes :x ='no

Associated Primitives

no t , xor

Reference.57

RM Logo

emptyq nwl
emq

Remarks

Returns ' t rue if its input is the empty word (') or the
empty list ([]) and ' fa Lse otherwise. Numbers are never
empty.

Examples

1: say emptyq 'fred
'false
1: say emptyq '
'true
1: say emq [Tom Joe]
'false
1: say emq bf bf [Tom Joe]
'true

emptyq is often used to test whether recursion can
continue. For example:

1 : bui Id 'sum

sum :numbers
i f emq :numbers [r e s u l t 0]
r e s u l t add f i r s t mumbers sum res t :numbers

Hence:

1 : p r i n t sum [100 20 3]
123

Reference.58

(

(!

end
(

Remarks

Used in parallel processing, end terminates only the
process which executes it.

Please see chapter 13.

Associated Primitives

a w a i t , b e g i n , paraLLeL, whenever

RM Logo

Reference.59

RM Logo

equalq nwll nivll
eqq

Remarks

Returns ' t r u e if nwll and nwll are equal and ' f a l s e
otherwise.

• Two numbers are considered equal if they differ by
1/2000000 or less

• Words are considered equal if they contain the same
letters in the same order, irrespective of case

• Lists are considered equal if their elements are equal
and in the same order.

If nwll and nw 12 are of different types the result will
always be ' f a Lse.

Examples

1: say equalq 1 2
false
1: say equalq 1 1
true
1: say equalq 'HOUSE 'house
true
1: say equalq [Oxford London] [Oxford Durham]
false

Associated Primitives

eequalq

Reference.60

RM Logo

(

erasefile filename
(

Remarks

Deletes the file filename from disk. Returns ' t rue if the
file was deleted, otherwise it returns ' fa Lse.

Example

unless e rase f i l e ' junk.dat Csay
Ccan/ ' t delete f i l e]]

\

Reference.61

RM Logo

escape

Remarks

Stops all processes (unlike end which stops only the
invoking process).

Associated Primitives

end , s top

Reference.62

>

RM Logo

eval list

Remarks

Treats the contents of list as a set of Logo expressions.
Logo returns a list composed of the values of each
expression.

If the list contains a procedure which does not return a
result, an error is returned.

Examples

1: print eval [2+2 7-2 8/4]
[4 5 2]

1: make 'x [here is the news]
1: print eval [first :x rest :x]
[here [is the news]]

Reference.63

RM Logo

exp number

Remarks

Calculates the exponential function, exp returns e raised
to the power of number.

Examples

1: say exp 4
54.5981500331442

1 : p r i n t Ln exp 5
5

Reference.64

(
RM Logo

(

(

(

(

(

(

(

(

(

<

(

(

explode word

Remarks

Returns a list made up out of the characters contained by
word.

Example

1 : p r i n t explode ' s l ough
Cs l o u g h]

Associated Primitive

implode

Reference.65

RM Logo

expose nwl

Remarks

Allows you to recover or 'unbury' procedures from the
workspace. It is the opposite of bury.

Primitives such as forward are buried, by default, when
Logo is loaded and cannot be exposed, expose only allows
you to get at procedures that have been buried.

Examples

1: say t i t l e s
rhombus
1: expose [square t r i ang le hexagon]
1: say t i t l e s
rhombus square t r i ang le hexagon

Associated Primitive

bury

Reference.66

RM Logo

fence

Remarks

Prevents the turtle from crossing the edge of the screen.
If you try to make it cross the edge of the screen, an
error message will be returned.

Crossing the edge of the screen will cause a throw ' f ence
which can be caught using catch ' fence (see chapter 5).

The turtle's field is normally 'unfenced' at start-up
time.

Example

Using:

1 : forever [catch 'fence [forever [f d 1]]
seth heading + 180]

reverses the direction of the turtle every time it hits
the edge.

Associated Primitives

fenceq, nofence, nowrap, wrap, wrapq

Reference.67

RM Logo

fenceq

Remarks
V

Returns ' t rue if the turtle's field is 'fenced', otherwise

it returns ' f a l s e .

Associated Primitives
f e n c e , no fence , nowrap, wrap , wrapq

)

1

Reference.68

RM Logo

fill numberl numberl

Remarks

Fills the graphics plane with the pen colour, taking the
current turtle position as the starting point. When a
colour other than the background colour is encountered, it
is treated as a boundary.

If numberl is either 0 or 1, the area is filled with a
solid colour (the current pen colour) and number! is
ignored (but must be present).

If numberl is 2, the area is filled with a pattern.
number! can take the values 0 to 7 and each gives a
different pattern.

If numberl is 3, number! defines a hatching pattern (a
bolder pattern). The range of numbers is 0 to 5.

Example

The following commands draw a square and fill it in as a
brick wall:

1: repeat 4 [f d 80 Lt 90]
1: L i f t Lt 45
1: fd 10
1 : setpc 2 f i LL 0 0
1: setpc 14 f i l l 3 5

Reference.69

RM Logo

first nwl

Remarks

Returns the first element of its input, which can be a
number, a word or a list.

The input cannot be an empty word or an empty list.

Examples

1 : say f i r s t ' w o l f
w

1 : say f i r s t Cbig bad w o l f]
b i g

1 : say f i r s t 12345
1

Associated Primitives

b u t f i r s t , b u t l a s t , last

Reference.70

(
RM Logo

forever list
1

Remarks:

Repeats the command list forever. You can stop the
command by pressing <ESC>, encountering end, s t o p ,

(escape or using throw.

Examples
i

1 : forever [forward 1 r igh t 1]

Pairing fo rever with catch can be very useful. For
example to print the file s a l e s on the screen:

1: catch 'endf iLe [forever [type r fc ' sa l es]]

Associated Primitive

repeat

(

(

Reference.71

RM Logo

forward number
fd

Remarks

Moves the turtle n steps in the direction of its current
heading. If the turtle's pen is down, the turtle leaves a
trace of its path. If number has a negative value, the turtle
moves backwards.

Example

1 : cs
1 : fo rward 50

Associated Primitive

backward

Reference.72

(
RM Logo

(

(

<

(

(

(

(

(

(

(

(

(

(

frac number

Remarks

Returns the fractional part of number.

Example

1: p r i n t f rac exp 1
0.71828172845904

Reference.7 3

RM Logo

Remarks

g c stands for garbage collector. It allows Logo to re-use
all of the workspace that is no longer required. Logo
automatically performs a garbage collection when it begins
to run out of unused workspace. This can be observed when
the turtle is drawing by a brief halt in the turtle's
movement.

Associated Primitive

nodes

Reference.7 4

(RM Logo

I
goodbye

' exit

Remarks

Deletes extensions, variables and procedures. Closes
dribble file, clears text and graphics and returns to the
operating system.

(' ; '

(

(

(

(

(.

(

Reference.7 5

(

RM Logo

goto word

Remarks

Transfers control to a different line within the same
program. The line to which control is transferred must
begin with a tag. A tag is a word; optionally with or
without a beginning quote mark, followed by colon dash
(:-)•

Example

This procedure removes one item from a list. The goto is
completely redundant; it just illustrates how to use the
primitive.

1 : bui Ld 'remove

remove ' x ' L i s t
i f emptyq : L i s t Cqoto ' e r r o r]
resuLt i f f i r s t : L i s t = :x Crest : L i s t]

[f i r s t : L i s t + > remove :x r es t : L i s t]
e r r o r :—say :x +> Cis not i n the L i s t] escape

It is considered bad programming style to use goto
statements, but they are occasionally useful in error
checking.

Reference.76

RM Logo

greaterequalq nwl nwl

grq
> =

Remarks

Returns ' t rue if nwl is greater than or equal to
nwl, otherwise it returns 'false .

• Two numbers are considered equal if they differ by
1/200000 or less.

• Words are compared in dictionary order A...Z,
irrespective of case.

The inputs nwl and nwl must be of the same type.

Examples

1: i f :number >= 0 [panic]

1 : i f grq 5 2 Csay C5 i s bigger than 2]]

Associated Primitive

greaterq

Reference.77

RM Logo

greaterq nwl nwl

geq
>

Remarks

Returns ' t rue if nwl is greater than nwl.

• The numbers are considered equal if they differ by
1/2000000 or less

• Words are compared in dictionary order A..Z,
irrespective of case.

nwl and nwl must be of the same type.

Example

The following command line tells the turtle that if
d i s t a n c e is greater than 10 it is to go forward 10 steps,
otherwise it is to go forwarddi s t ance steps:

1 : forward (i f :distance > 10 [10] C:distance])

Associated Primitive

greaterequalq

)

1

Reference. 78

RM Logo

<

grievance
(

Remarks

Returns the text of the message given by Logo in reply to
the most recent error.

Example

1: say grievance

Associated Primitive

moan

(' .

(

(

(

(

(

V
Reference.79

(

RM Logo

heading

Remarks

Returns the turtle's current drawing heading (not its
movement heading).

Examples

1 : cs
1 : p r i n t heading
0

1 : Lef t 90
1 : p r i n t heading
270 \

The following procedure draws a circle and prints the
turtle's heading after each step:

>'
1 : bui Ld ' c i rcLe

c i rcLe
repeat 36 Cfd 10 Lt 10 p r i n t heading]

Associated Primitive

seth

Reference.80

RM Logo

hideturtle
ht

Remarks

Makes the turtle invisible. The turtle continues to draw
and obey commands.

You can make the turtle visible again using showturt Le.

Example

cs
forward 50
Left 90
hideturt Le
forward 50

A

Associated Primitive

showtur t Le

Reference.81

RM Logo

if a listl
if a listl listl

Remarks

In the first form shown above, if the expression a is
' t r u e the command listl is executed, otherwise the next
line is executed.

In the second form, if the expression a is " t rue the
command listl is executed; if a is ' f a l s e , the command
listl is executed.

In both forms, if listl or listl produce a result, this
will be passed back as the result of the i f statement.

Examples

The following example is a procedure which allows the
computer to make a decision (yes or no) for you. Three
versions are given, each using i f in a different way.

i f used to control execution:

The procedure deci si on using i f with one list:

1 : bui Ld ' d e c i s i o n

decision
if pick 2 = 1 [result 'yes]
result 'no

1 : say d e c i s i o n
yes

Reference.82

(

<

(

(

(

(

(

(

(

(

(

RM Logo

The same procedure deci si on using i f with two lists:

1: ed i t decision
i f p ick 2 = 1 [r esu l t 'yes] [r esu l t 'no]

1 : say decis ion
'no

Finally, i f used to return a result

1: ed i t 'dec is ion
resu l t i f pick 2 = 1 [' yes] [' no]

1 : say decision

Reference.8 3

RM Logo

implode list

Remarks

Returns the word made by concatenating (joining) all the
words in its input list.

i mp Lode is the opposite of exp Lode.

Example

1 : p r i n t impLode Cs L o u g h]
sLough

Associated Primitive

expLode

Reference.84

RM Logo

infile filename

Remarks

Opens the file filename for input. Returns ' t rue if the
file is opened successfully and ' f a Lse otherwise.

Example

The following command tries to open the file d a t a f i Le for
input. If d a t a f i Le is open it prints the message ' i n p u t
f iLe aLready o p e n ' a n d stops.

1 : unLess i n f i L e ' d a t a f i L e . d a t
L~say [i n p u t f i Le aLready open] escape]

Associated Primitives

c L o s e f i L e , i n f i L e s , r e a d f i L e e , r e a d f i L e d ,
r e a d f i Le L

Reference. 85

RM Logo

infiles

Remarks

Returns a list of the names of files open for input.

Example

1 : p r i n t i n f i Les
Cda ta f i Le l d a t a f i L e 2]

Associated Primitives

cLose f i Le, i n f i Le

)

)

)

>

Reference.86

(RM Logo

() .

int number
(

Remarks

Returns the integer value of number. Any decimal part is
truncated for both positive and negative values of number.

/ You can make sure of rounding numbers up by adding 0.5 as
shown in an example below.

(

(

<

(

()

(

(

(

i

Examples

1 : p r i n t i n t —2.3
- 2
1 : p r i n t i n t exp 1
2
1 : p r i n t i n t 44.6
44
1: p r i n t i n t (44.6 + 0.5)
45

Reference.87

RM Logo

join wll wl2
+ +

Remarks

Returns a word or list by joining the first and second
inputs.

Inputs to j oi n cannot be numbers and they must both be
the same type.

Examples

1: print join Cthe owl] Cand the pussycat]
Cthe owl and the pussycat]

1: print join 'pussy 'cat
'pussycat

1: print Ca b] ++ Cc]
Ca b c]

Associated Primitives

putfirst, putlast, sentence

Reference.88

RM Logo

(

(

(

(

(

key

Remarks

Delays the calling process until a key is struck and then
returns the value of this key without echoing it to the

i screen. Digits are returned as a Logo number; other
characters are returned as one-character words.

(If Logo is reading a command file, key returns the next
character read from the keyboard and not from the command
file.

Please see Chapter 7 for a detailed explanation of using
key.

Special characters returned by key will be displayed as an
escape sequence if you use p r i n t .

Example

i If you press <CTRL> and G together after p r i n t key, the
escape sequence will be displayed as:

(1 : p r i n t key
'\07

Associated Primitives

keyq , read L i s t

Reference.89

RM Logo

keyq

Remarks

If a key has been struck, keyq returns ' t rue and the key
can be read using key. ' f a l s e is otherwise returned. If
Logo is reading a command file, keyq will still test the
keyboard.

Examples

The following procedures make the turtle move forward
continuously and let you use the < L > and < R > keys to
change its direction:

1: bui Ld 'move

move
forever [i f keyq [check.key key] [forward 1

1: bui Ld check.key

check.key 'but ton
make 'but ton Lowercase:button
i f :button = ' I [Lef t 10]
i f :button = ' r [r i g h t 10]

Associated Primitive

key

Reference.90

RM Logo

label nwl

Remarks

Prints the text nwl near to the turtle. If the current
process is addressing more than one turtle, then each will
print nwl. The label is printed in the current turtle pen
colour. The turtle is not moved by the label.

Example

1: cs
1 : forward 50
1: LabeL [he l l o world]

(

Reference.91

RM Logo

last nwl

Remarks

Returns the last element of its input. The input must not
be empty.

If the input is a decimal number, the digit before the
decimal point is returned. If an integer is input then
the last digit is returned.

The last letter of a word is returned, and the last item
in a list.

)
Examples

1: say Last 34
4
1: say Last 45.6
5
1: say Last Chumpty dumpty sat on a waLL]
waL L
1 : say Last 'humpty

y

Associated Primitives
butfirst, butLast, first

J

)

, . : . ^ ' ')

Reference.92

)

RM Logo

left angle
It

Remarks

Turns the turtle left (anticlockwise) by angle degrees.
If angle has a negative value, the turtle will turn right
(clockwise).

Examples

1: cs
1 : Lef t 90
1 : cs
1 : Lef t - 9 0

Try the following:

1 : dsh [box [-8 - 8 H 8 - 8] [8 8] [- 8 8 3 [- 8 - 8]]
1 : setshape 'box
1 : repeat 360 [L e f t 1]

Associated Primitive

r i g h t

Reference.93

RM Logo

)

lessequalq nwl nwl
leq
< =

Remarks

Returns ' t rue if the first input is less than or equal to
the second, otherwise it returns ' f a Lse.

• Two numbers are considered equal if they differ by
1/200000 or less. ,

• Words are compared in dictionary order A...Z,

irrespective of case. \

The inputs nwl and nwl must be of the same type.

Examples
1: say
true
1: say
fa Lse
1: say
true
1: say
false
1: say
false
1: say
true

Lessequalq

lessequalq

3 <= 3

5 <= 3

'peter <=

'cathy <=

1 3

6 2

1 cathy

'peter

Associated Primitive

lessq

Reference.94

)

(
RM Logo

lessq nwl nwl

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Remarks

Returns ' t rue if nwl is less than nwl.

• Two numbers are considered equal if they differ by
1/2000000 or less.

• Words are compared in dictionary order A...Z,
irrespective of case.

Examples

1: say Lessq 1 3
true
1: say Lessq 6 2
faLse
1: say Lessq 4.00001 4.00002
true

Associated Primitive

LessequaLq

Reference.9 5

RM Logo
)

lift

Remarks

Lifts the turtle's pen off the paper so that the turtle
doesn't draw when it moves. This primitive is the
opposite of d rop. It is also used in defining the turtle
shape (seedef ineshape) .

)

)

)

Example

cs
L i f t
fd 20
drop
fd 20

)

)

Associated Primitives

drop, upq

1

)

Reference.96
)

RM Logo

line listl listl number

Remarks

Draws a line in colour number between the points listl and
listl. listl and listl are in the form of coordinate
pairs.

Example

The following commands draw a square on the screen:

Line [-80 80] [80 803 3
Line [80 803 [80 -803 3
Line [80 -80] [--80 -80] 3
Line [-80 -80] [-80 80] 3

Associated Primitive

setpoint

Reference.97

RM Logo

listq nwl

Remarks

Returns ' t r u e if nwl is a list and ' f a L s e if it is not.

Examples

The following procedure, check, checks if its input is a
list. If so, it prints ' L i s t ' , otherwise it prints ' no t a
L i s t ' .

1 : bui Ld 'check

check 'object
if Listq :object Csay [List]] Csay [not a I

1: make 'towns [Durham Oxford London]
1: make 'town 'Exeter

1: check :towns
List

1: check :town
not a List

Associated Primitive

numberq, wordq

Reference.98

RM Logo

In number

Remarks

Returns the natural logarithm (log to base e) of number,

number must be greater than zero.

Examples

1: Ln 0.5
-0.69314718055995

1: Ln 20
2.99573227355399

Associated Primitive

(e x p

(

(

(

(..

C

(

Reference.99

(

RM Logo

local wl

Remarks

)

)

)

Creates one or more new variables within a procedure.
These variables can only be used by the procedure which
generates them and by any procedures called by the
generating procedure.

If a local variable is given the same name as a global
variable, the local variable is used until the end of the
procedure which created it. The global variable is then
available again. \

)

Examples

Local Cp q rl

creates local variables called p, q and r.

The following example solves quadratics, giving you a list
of all solutions.

1: bui Ld 'solve.quad
)

solve.quad 'a 'b "c
local 'd
'd < - (: b * :b - 4 * :a * :c)
resu l t branch :d < 0 L~L~]] case :d = 0

[eval C - : b / 2 * : a]] defaul t
Ceval [< - : b + sqt id) / (2 * : a)
(- : b - s q t :d) / (2 * : a)]]

1 : p r i n t solve.quad 1 7 12
[-3 - 4]
1 : p r i n t solve.quad 1 (—8) 16
L~4]

Reference.100
)

RM Logo

(

log number
(

Remarks

Returns the logarithm (log to the base 10) of number,

number must be positive and greater than 0.

Examples

1: Log 0.5
-0.30102999566398

1: Log 20
1.30102999566398

(

(

(

(

(

(

(

(

Reference.101

RM Logo

lowercase nwl
)

Remarks

Returns the word or list made by converting every
alphabetic character in its input to lower case. There is
no effect on a number.

Example

1: say Lowercase [LOGO system]
Logo system

Associated Primitive

uppercase

)

-

)

)

Reference.102

i<

RM Logo

(

made
(

Remarks

Returns a list of names of all global variables and
variables known to this process.

Example

/ 1 : say made
s ide angLe number

/ Associated Primitives

make, unmake

(

(

(

(

(

(

(

(

(

Reference.103

RM Logo

make word nivl
<-

Remarks

Examples

1: make 'angle 90
1: say :angLe
90

)

)

Creates a variable called word and gives it the contents
of nwl.

You can get at the contents of the variable using
va lue or a colon (:).

If ma ke is used in a procedure and word doesn't already
exist, then the resulting variable is global. It will
remain in Logo's workspace unless you use unmake on the
word. \

)

)
1 : 's ide <-100
1: say value :side \
100

Associated Primitives \

l o c a l , made, unmake, va lue , valueq

)

)

Reference.104

RM Logo

(

moan
(

Remarks

Reproduces the last error. All processes are stopped.

You can catch "e r ro r when moan is run; if you do then
no message is printed and the process that caught the
error continues after the catch.

Associated Primitives
)

/ g r ievance

C) . • ' " • ' ' ' ;

i
(••

(

O \ "
()

(

(* •

(

Reference. 105

(

RM Logo

multiple

Remarks

Turns parallel processing back on after s i ng le has
been used, mu 11 i p I e is the default state.

Associated Primitive

s i n g l e

Reference.106

multiply numberl number!
mul

RM Logo

(

Remarks

Returns the product of its inputs.

Examples

: print multiply 20 8
60

: make ' x 13
: say multiply :x 3

39

: say 10.5 * 10
05

(

(

Reference.107

RM Logo

near

Remarks

Returns a list of the turtles which are within eight
screen units of the centre of the current turtle.

If your process is addressing more than one turtle,
nea r refers to the lowest numbered one (normally the
earliest one created).

If any turtle is sensing and throw ' t o u c h t u r t L e occurs,
then nea r can be used to find out which turtle(s) caused
the throw.

Example

1: cs
1: tell [1 2 3]
1: print near
[2 3]

J

)

Reference.108

RM Logo

nodes

Remarks

Returns a number indicating the amount of unused memory
in Logo's workspace.

For a more accurate measure of free work space, use gc
before nodes.

Logo stores procedures and variables using complex rules.
It is very difficult to give an easy method to find out
how much workspace is occcupied by any application.

Associated Primitive

gc

Reference.109

RM Logo

)

nodribble
)

Remarks

When the dribble primitive is used, everything you type in
is written to a command file, nodribble closes the
command file and your typing stops being recorded. You can
replay the command file using consu l t or rep lay .

Associated Primitives

consult, dribble, dribbleq, replay

)

• ' .)

J

)

)

j

Reference.110

RM Logo

(.

nodriver
(.

Remarks

Unloads any floor turtle driver which is present in Logo.

, Associated Primitive

dr iver

(

(

(

(

(*

(

(

(

(

(
Reference.Ill

(

RM Logo

nofence

Remarks

When the fence primitive has been used, an error is
reported if the turtle hits the edge of the screen.

nofence removes this error reporting and lets the turtle
move off the screen.

Examples

1: cs
1 : fence
1 : fo rward 1000

produces an error message on the screen because the turtle
has hit the 'fence' around the screen. However, nofence
will let the turtle out of the visible screen area.

1 : cs nofence
1 : f d 1000
1 : back 950

)

Associated Primitives

fence, fenceq, nowrap, wrap, wrapq

Reference.112

)

RM Logo

nosense
(

Remarks

Switches off the sensing for all turtles controlled by a
particular process.

When turtles are sensing, a signal is thrown if they go
near another turtle, go into a different background colour
or hit the edge of the screen. Sensing is time consuming,
and it is advisable to turn sensing off with nosense
whenever you don't need it.

Associated Primitive

sense

(

(

(

(

(

(

(

Reference.113

(

RM Logo
)

not a

Remarks

Returns ' true if its input is ' f a l s e and ' f a l s e
if its input is ' true.

Examples

1 : p r i n t not (1 = 1)
fa lse

1 : p r i n t not (1 = 2)
t rue

1: p r i n t ~ ' f a l se
' t r ue

Associated Primitives

both , e i t h e r , xor

Reference. 114

RM Logo

nowrap
nofence

Remarks

Allows the turtle to move off the screen without appearing
on the opposite edge.

If the turtle moves off the screen following a wrap
command, then it reappears at the opposite side of the
screen, nowrap lets the turtle continue to move off the
screen without reappearing on the opposite side of the
screen.

nofence can be used interchangeably with nowrap.

Examples

1: cs
1 : wrap
1 : Lef t 45
1 : fo rward 1000

shows the turtle wrapping around the screen and the
following shows the turtle doing the same action without
wrapping.

1 : cs
1 : nowrap
1 : Lef t 45
1 : f o rward 1000

Associated Primitives

f e n c e , f e n c e q , wrap, wrapq

(

Reference.! 15

RM Logo

numberq nwl

Remarks

Returns ' true if nwl is a number and ' f a Lse otherwise.

Example

The following procedure tests if its input is a number:

1 : bui Ld check.no

check.no ' o b j e c t
1 : say p u t f i r s t : o b j e c t i f numberq : o b j e c t

[[i s a number]]
[[i s not a number]]

1 : make ' i t e m l 1234
1 : checkno : i t e m l
1234 i s a number

1 : make ' i t em2 [1 2 3 4]
1: checkno :item2
[1 2 3 4] is not a number

Reference.116

http://check.no
http://check.no

RM Logo

objects

Remarks

Returns a list of all the Logo words which have had
properties assigned to them using a s s e r t .

Examples

1: assert 'whiskers "species 'cat
1: assert 'patch "species 'dog
1: assert 'patch 'colour Cblack and white]
1: objects
[patch whiskers]

Associated Primitives

assert, asserted, assertedq, assertions,
classified, deny

Reference.117

RM Logo

outfile filename
)

Remarks
\

Creates the file filename and opens it for output. Any-
existing file with the same name is deleted.

Returns ' t rue if the file is successfully opened and
' f a l s e otherwise.

Example

The following command tries to open d a t a f i l e a s a n output
file. If it is successful, the program continues,
otherwise it prints the message ' ou tpu t fi le a l r e a d y open'
and stops. \

i f not o u t f i l e ' d a t a f i l e Csay [output f i l e
already open] stop]

Associated Primitives

appfile, closefile, outfiles, writefilec,
writefiled, writefilel

)

Reference.118

RM Logo

(;

outfiles
(I

Remarks

Returns a list of the names of files currently open for
output.

Example

/ 1 : p r i n t ou t f i Les

Cdata1.dat data2.dat]

/ Associated Primitives

c l o s e f i l e , out f iLe

(

(

(

(^

(

(

Reference.119

() ,

RM Logo

parallel list

Remarks

The commands given in the list of lists are all started as
separate processes.The process that issued the pa ra L Le L
command is suspended until they have all finished.

Unless catch catches it, an error occuring in any process
will terminate all other processes running at that time.

Example

paraLLeL [[monitor.keyboard] [move.robot]]

A further example of parallel processing is provided in
the file cage.def on the RM Logo disk.

Associated Primitives

begin, run

Reference.120

(
RM Logo

pc

Remarks

Returns the colour of the turtle's pen. If more than one
turtle is active, then the pen colour of the first turtle
created is returned.

Examples

1: p r i n t pc
1
1: setpc 2
1 : p r i n t pc
2

Associated Primitive

setpc

(

(

(

i

i

{ •

l
Reference.121

RM Logo

pennormal

Remarks

Lowers the turtle's pen and changes the drawing style so
that existing lines are overdrawn when the turtle moves.

pennorma L is used to cancel the effect of a penreve r se .
The penrever se primitive makes the turtle erase existing
lines to appear to be drawing over them (known as XOR
drawing).

Associated Primitives

penreverse, reverseq

Reference.122

RM Logo

penreverse
px

Remarks

Lowers the turtle's pen. When the turtle moves, it draws
lines where there are none, and erases existing lines in
the same colour that it crosses over.

Example

1 : cs
1: repeat 4 L"fd 40 Lt 90]
1: penreverse
1: repeat 4 Cfd 40 Lt 90]

2 ^

The corner dots remain because each corner is plotted
twice: once when the turtle arrives; once when it leaves.

Associated Primitives

pennormal , reverseq

Reference.123

RM Logo

Pi

Remarks

Returns the value of pi (3.142...) accurate to the full
precision of the internal arithmetic.

Examples

1 : p r i n t pi
3.1459265358979

1 : p r i n t 22/7 - p i
0.00126448926735

The following procedure can be used to calculate the area
of a circle, given its diameter:

1 : bui Id 'a rea.c i rcLe

area.circle 'radius
result pi * (:radius |2)

Reference.124

(

(

(

(

Example

The following example simulates the throwing of a die:

RM Logo

(

(

(

(

(

1

(

(

pick number

Remarks:

Returns a pseudo-random integer in the range 1 to number
inclusive.

1: p r i n t pick 6
5
1: p r i n t pick 6
3

Associated Primitives

random

Reference.125

RM Logo

I

po wl

Remarks
)

Prints out the definition of the procedures named in wl on
the screen.

A library procedure copy is provided on your RM logo disk
which will list them to a printer.

Example

1: po t i t l e s

lists the definition of all procedures known to Logo which
are neither buried nor primitives. ,

Reference.126

RM Logo

point list

Remarks

Returns a number which tells you which colour the point
list is currently painted, list is a coordinate pair.
The significance of colour numbers is described in Chapter
2.

Examples

1: setpoint [40 40] 3
1: say point C40 40]
3

Associated Primitive

setpoint

Reference.127

RM Logo

power numberl numberl

Remarks

Raises numberl to the power of numberl.

Examples

1 : power 2 3
8 j
1 : power 3 2
9

)

Reference.128

I RM Logo

(

print nwl
()

Remarks

Prints the contents of nwl on the screen.

Lists are printed with their outermost brackets. Elements
of a list are separated by a space.

Logo special characters whose ASCII codes are within the
(printable) range 20—7E hexadecimal are printed prefixed
by the escape character \ (characters whose ASCII codes
are in the range 01 to IF and 7F to FF hexadecimal are
printed as two digits prefixed by \).

(

Examples
y

1: p r i n t [Logo rules ok]
[Logo rules ok]
1 : p r i n t 'elephant
'elephant

1: p r i n t '\1b\E
Mb\0e

< 1: print '\21 ; this is not special to Logo
i i

(I

Associated Primitives

say, type

<

i

1: print "\23 ; this is special to Logo

Reference.129

file://'/1b/E

RM Logo

putfirst nwl list

+ >

Remarks

Returns the list which is produced by putting nwl at the
front of list.

Examples

1: print putfirst 2 [3 4]
[2 3 4]

1: print putfirst Cthe owl] [and the pussycat]
[[the owl] and the pussycat]

1: print 'x +> [y z]
[x y z]

Associated Primitives

putlast, join, sentence

Reference.130

RM Logo

putlast list nwl

pl
< +

Remarks

Returns the list which is produced by putting nwl at the
end of list.

Examples

1: print putLast C3 4] 5
[3 4 5]

1: print putLast Cthe owL and] Cthe pussycat]
Cthe owL and Cthe pussycat]]

1: print Cx y] <+ 'z
Cx y z]

Associated Primitives

putfirst, join, sentence

Reference.131

RM Logo

random

Remarks

Returns a random decimal fraction between 0 and 1.

Examples

1 : p r i n t random
0.050603

The following routine returns a pseudo-random number drawn
from a Gaussian distribution of mean and standard
deviation (sd).

1 : bui Ld 'gauss

gauss 'mean ' sd
Local ' t
•t < -0
repeat 12 C' t <—:t + random]
r e s u l t :mean + (: t —6) * :sd

1 : p r i n t gauss 100 16
9 8 . 6 5 4 . . .

Reference.132

RM Logo

readfilec filename
rfc

Remarks

Reads the next character from the named file and returns a
one-character word.The file must have been opened for
input.

If there is no more data in the file, readf i Lee throws
1 endf i Le. If this is not caught, it returns the word
' endf i Le as its result.

Examples

1 : make 'da ta read f iLee ' m y f i L e . d a t

will read the next character from the file myf i Le. da t

An example procedure Li s t f i Le, which prints the contents
of a file on the screen, is provided on the RM Logo disk
as L i s t f i Le.def.

Associated Primitives

cLosefiLe, infiLe, infiLes, readfiLed,
readfi LeL

Reference.133

RM Logo

readfiled filename
rfd

Remarks

Reads the next Logo data item (a number word or list) from
the named file and returns it. The file must have been
opened for input.

If there is no more data in the file, readf i Led throws
1 endf i Le. If this is not caught, it returns the word
1 endf i Le as its result.

Example

1 : make "data read f iLed ' m y f i L e . d a t

Associated Primitives

c L o s e f i L e , i n f i L e , i n f i L e s , r e a d f i L e e ,
read f iLeL

Reference.134

RM Logo

)

readfilel filename
rfl

Remarks

Reads the next line from the named file and returns a Logo
list. The file must have been opened for input.

If there is no more data in the file, readf i Le L throws
endf i Le. If this is not caught, it returns the word
'endf i Le as its result.

Example

1 : make 'da ta r e a d f i LeL ' m y f i L e . d a t

Associated Primitives

c L o s e f i L e , i n f i L e , i n f i L e s , r e a d f i L e e ,
r e a d f i Led

Reference.135

RM Logo

readlist
rl

Remarks

Reads information typed at the keyboard until you press
<ENTER>, then returns what you typed as a Logo
list.

Examples

1 : bu i l d 'quest ion

question
say [name one colour in a traffic Light]
if amongq readlist CCred] Cyellow] Camber]

Cgreen]] Csay Ccorrect!] stop]
Csay Cno, try again]]

question

1: question
name one colour in a traffic light
purple
no, try again
name one colour in a traffic light
green
correct!

Associated Primitives

ask , key , keyq

Reference.136

RM Logo

remainder number number
rem

/o

Remarks
Returns the remainder that results from dividing the first
input by the second (the quotient can be found by using
the primitive share) .

Examples

1: p r i n t remainder 13 2
1
1: print remainder 12 2
0
1: print 41 % 10
1

Associated Primitive

share

Reference.137

RM Logo

rename wordl word!

Remarks

Renames the procedure wordl, giving it the new name
wordl. The old name is lost. You can't rename a
primitive or a buried procedure.

Example

1 : rename 'polygon ' s i x . s i d e d . f i g u r e

Associated Primitive

a l i as

Reference.138

RM Logo

renamef ile filenamel filenamel

Remarks

Renames the file filenamel to filenamel. Returns
11 rue if the operation succeeded and ' f a l s e otherwise.

Example

unless renamefi le ' t u r t l e s l ' t u r t l e s 2 Csay [cannot
rename your f i l e] escape]

Associated Primitives

d i r e c t o r y , e rase f i l e

Reference.139

RM Logo

repeat integer list

Remarks

The list of commands list is repeated integer times.
integer must be zero or positive. If integer is zero then
the list is not run.

Examples

The following primitives draw a square:

1: cs
1: repeat 4 [forward 50 Left 90]

The following example draws some 'spinning squares'. They
use the following procedure:

1: bu i ld 'square
r

square
repeat 4 [f d 50 Lt 90]

1 : cs
1: repeat 3 [square Lt 120]

4 \.

Associated Primitives

do, fo rever , unLess, whiLe
Reference. 140

RM Logo

replay filename

Remarks

Replays a sequence of commands held in the file filename.
The commands are displayed on the screen and the prompt
changes from 1: to 1<.

Even if an error occurs in the file, the commands continue
to be replayed.

Example

1: replay ' turtLes1.Lgc

Associated Primitives

consu l t , d r i b b l e , dr ibbleq

Reference.141

RM Logo

result nwl

Remarks

Stops the procedure in which it occurs and passes control
back to the procedure or command which called it. It
returns the value nwl to this procedure or command.

Examples

The following procedure calculates the average of two
numbers:

1 : bui Ld 'average

average 'numberl 'number2
r e s u l t (:number1 + :number2) /2

1 : say average 5 15
10

1 : say average 10 15
12.5

Reference.142

RM Logo

reverseq

Remarks

Returns ' t rue if the turtle's pen is plotting in reverse
mode, penreverse or px cause the turtle pen to plot in
reverse or exclusive OR mode.

If the pen is lifted or is plotting normally, it returns
' f a l s e .

Associated Primitives

pennormal , penreverse

Reference.143

RM Logo

right angle
rt

Remarks

Turns the turtle right (clockwise) by angle degrees. If
angle has a negative value, the turtle turns to the left
(anticlockwise).

Examples

1: cs
1: r igh t 45
1: cs
1 : r i gh t —45

Associated Primitive

Left

)

)

)

)

)

)

\

Reference.144

RM Logo

rubber
eraser

Remarks

Selects the pen colour which matches the background. The
turtle rubs out any lines it crosses.

The line-drawing algorithm used means that forward and
ba c kwa rd do not necessarily trace exactly the same
screen path. For perfect rubbing out, you should start in
the same place and retrace your steps exactly.

rubber is equivalent to setpc bg.

Example

1: cs
1: forward 20
1: centre
1: rubber
1: forward 20

Reference.145

KM Logo

run list

Remarks

Executes the commands in list. If any command in list
returns a value, this value is also returned by run,
and commands after that are not executed.

Examples

The following procedure executes whatever you type at the
keyboard providing it produces a result, f orwa rd 50 will
give an error because it doesn't produce a result!

1: bui Ld run. input

run. input
say run read l i s t
run. input

1: run. input
?10 + 5
15

?5 * 4
20

?10 = 5 * 3
fa lse

Reference.146

RM Logo

say nwl

Remarks

Prints the contents of nwl on the screen, followed by a
carriage return.

say prints lists without their outermost brackets.

say also sends special characters to the screen.

Examples

1: say 1 + 3
1 + 3

1 : say [he l l o there]
he l lo there

The following command appears equivalent to t s and will
reset and clear the screen:

1 : say Mbc

However, you should use such calls with care and, if it
exists, use the equivalent in the Logo language.

Associated Primitives
p r i n t , type

Reference.147

RM Logo

scrap wl

Remarks

Procedures named by wl are deleted from memory. If
wl is a list and one of the procedures named does not
exist, none will be scrapped.

The following is a special case which scraps everything
that isn't buried:

scrap t i t l e s

Examples

1: scrap 'triangle

1: scrap [square triangle]

Reference.148

RM Logo

sense

Remarks

Makes the turtle sensitive to touching other parts of the
graphics screen.

If the turtle is about to move onto a different background
colour, it will stop and do a throw ' t ouch .

If the turtle goes near another turtle or hits the edge of
the screen, it will stop and do a throw ' t o u c h t u r t Le.

fence andca tch ' f ence work independently of the
turtle's sensing or not sensing. The throw will direct
control to the process which gave the current turtle the
most recent sense command. See Chapters 5 and 12 for
details of how to use throw.

sense is time consuming, you should cancel it with
nosense when you don't want it in use any more.

Associated Primitives
f e n c e , no fence , nosense

Reference.149

RM Logo

sentence nwll nwll
se

Remarks

Examples

1: print sentence 'cats Care great]
[cats are great]

1: print se [cats dogs] [rabbits hamsters]
[cats dogs rabbits hamsters]

1: print 'butter && 'flies
[butter flies]

Associated Primitives

j o i n , p u t f i r s t , put last

)

.

)

)

)
Makes a list out of nwll and nwll. If they are both
lists, sen tence returns a list made by joining them.
If they are both words, it puts them both into a list. If
only one is a list, sen tence includes the other nwl in
it.

1

Reference. 150

RM Logo

setbg number

Remarks

Changes the screen background colour to number.

The command will take effect from the next c Lean or
cLearscreen command, and will be ignored if the screen is
in text only mode. The numbers associated with colours
are listed under the description of the co Lou r
primitive.

Example

1 : setbg 3
1 : cs

Associated Primitive

bg

Reference.1S1

RM Logo

setc number

Remarks

)

)

)

>

)
This colour is not necessarily the same as the turtle's
pen colour. Nor will the turtle always appear as the
colour you specify it to be. The turtle is plotted in
exclusive OR mode (mixing colours where they coincide on
screen) so you must consider the background colour when
choosing the turtle colour. A black background however, \
will guarantee an accurate turtle colour.

Changes the colour in which the turtle is painted on the
screen to number.

The numbers associated with colours are listed under the
description ofcoLour.

Examples

1 : p r i n t colour
3
1: setc 1
1 : p r i n t colour
1

Associated Primitive

colour

Reference. 152

)

)

)

)

)

)

RM Logo

setcursor list

Remarks

line

25

Moves the cursor to the position given by list. The first
element of list is the screen line and the second, the
screen column, using the following convention:

column
-80

column

text mode graphics mode

-40

Out-of-range values produce incorrect displays on screen.

Example

1: setcursor C20 16]

Associated Primitive

cursor

Reference.153

RM Logo

setdir angle

Remarks

Sets the turtle's movement heading to angle. The drawing
heading is not affected.

Examples

The following commands move the turtle at an angle of 45
degrees while keeping it pointing northwards:

1 : cs
1: t e l l 1
1 : se td i r 45
1: setspeed 20

Associated Primitive

di r

Reference.154

RM Logo

seth angle

Remarks

Sets the turtle's drawing heading to angle degrees. The
turtle shape turns to show its new direction, but the
movement heading is not affected.

Headings increase clockwise from 0, as shown below.
Negative values of angle make the turtle turn in an
anticlockwise direction.

270 W- E90

*
s

180

Examples

1 : cs
1 : se th 120
1 : cs
1 : se th -120

Associated Primitive

heading

Reference.155

RM Logo
)

setpc number

Remarks

Sets the turtle's pen colour to number. The values of
number and their related colours, are given in Chapter 2
and listed under the primitive colour .

The pen colour can be different to the turtle's colour.
The colour may also be applied in either a 'true' or
'reversed' mode depending upon whether or not
penreverse has been used.

Example

1: setpc 2

Associated Primitive

pc

!

)

)

)

'

Reference.156

'

RM Logo

setpoint list number

Remarks

Plots a point in colour number at the position given in
list.

list is a coordinate pair.

Example

1: cs

1: setpoint [50 0] 3

Associated Primitive

point

(

(

(

(

(

(

(

(

(

(

<

O
(

O
Reference.157

(

RM Logo

setpos list

Remarks

Sets the turtle's x and y coordinates to the values given
by list. If this moves the turtle outside the graphics
area of the screen, and fence has been used, a t h row
' f ence occurs.

The turtle does not draw as it moves.

Examples

1: cs
1: setpos [50 50]

)

)

)

n r\

Associated Primitives

pos, se tx , se ty , xcor, ycor

)

)

Reference.1S8

RM Logo

setshape word

Remarks

The turtle assumes the shape named by word. The shape
must have previously been defined i nade f ine shape
command.

shapes can be used to find out the defined turtle
shapes.

Example

The shape of an arrow can be assumed by the turtle by
first defining the arrow and then assigning the arrow
shape to the turtle.

1 : say shapes

1: defineshape [arrow L-& -8][0 0HC8 -8]
Lift [0 0][0-12]]

1: setshape 'arrow

Associated Primitives

bdefineshape, shape, shapedef, shapes

Reference.! 59

RM Logo

)

setspeed number
)

Remarks
)

Changes the turtle's movement speed to number.

If number exceeds 100, there is no change to the turtle's
speed, number may be negative (down to —100).

The turtle moves continuously in the direction given by
its movement heading but does not draw as it moves.
(Remember the movement heading is different from the
drawing heading.)

Example

1: setspeed 5

Associated Primitives \

d i r , s e t d i r , speed

)

)

)

)

)

Reference.160

)

(RM Logo

setx number

Remarks

<

<

Sets the turtle's x coordinate to number. If this moves
the turtle outside the graphics area of the screen, and
fence has been used, a throw ' f ence occurs.

The turtle does not draw as it moves.

Example

1 : cs
1 : se tx 50

Associated Primitives

s e t p o s , s e t y , x c o r , ycor

(

(

Reference.161

RM Logo

sety number

Remarks

Sets the turtle's y coordinate to number. If this moves
the turtle outside the graphics area of the screen, and
fence has been used, a throw ' f ence occurs.

*

The turtle does not draw as it moves.

Example

1: cs
1 : sety 50

Associated Primitives

setpos, se tx , xcor , ycor
)

Reference.162

)

KM Logo

shape

Remarks

Returns the name of the turtle's shape. If more than one
turtle is receiving commands from this process, the result
refers to the most recently created turtle.

If the turtle's shape is the default shape, shape returns
the empty word.

Example

1: cs
1: p r i n t shape

1: setshape 'b icyc le
1: p r i n t shape
'b i cycle

Associated Primitives

setshape, shapedef, shapes

Reference.163

)
RM Logo

shapedef word
)

Remarks
)

Returns the definition of the shape word.

Example

1 : dsh [b o x t - S - 8] [8 -83 [8 83C-8 8311-8 -833
1 : p r i n t shapedef 'box

[b o x [- 8 -83 [8 -83 C8 8] [-8 8] [-8 -833

Associated Primitives

se tshape , shape, shapes A

J

!

Reference.164

)

RM Logo

shapes

Remarks

Returns a list of the shapes that Logo knows about at
that time. This doesn't include the default shape.

Examples

If you have started Logo with the files supplied by
Research Machines (including the start-up file s t a r t . Lgc)
then:

1 : p r i n t shapes

produces:

[b i c y c l e car t r a i n coachD

Associated Primitives

se tshape , shape, shapedef

Reference.165

RM Logo

share numberl number!
a)
Remarks)

Returns the integer quotient after numberl has been divided
by numberl. The remainder can be found using remai nder.

Examples

1: p r i n t share 6 3
2

1 : p r i n t share 6 4
1

1: p r i n t 11 112
5

1 : p r i n t evaL ['answer share 6 4
1 remainder rem 6 4]

[answer 1 remainder 2]

Associated Primitive
remainder

)

Reference.166

(
RM Logo

showturtle
st

Remarks

(
Makes the turtle visible. This is the opposite of
h i d e t u r t L e .

/ Examples

(

«

(

cs
ht
forward 50
Left 90
st

Associated Primitive

hidetur tLe

(

(

Reference.167

RM Logo

')

sin angle

Remarks

Returns the sine of angle, which is specified in degrees.

Examples \

1 : p r i n t s in 30
0.5 \

Associated Primitives
)

cos, tan

.)

)

)

)

)

)

)

Reference.168

RM Logo

single

Remarks

The process which issues s i ng Le turns off parallel
processing until it either issues amult iple command or
ends.

Example

s ing le
' x <— : x + 1
mul t ip le

Where more than one process could be altering ' x,
si ng le ensures that no other process reads ' x and alters
it at the same time — otherwise, you would get a wrong
result.

Associated Primitive

mul t ip le

Reference.169

RM Logo

speed

Remarks

Returns the turtle's current speed.

Examples

i f speed = 0 Csetspeed 10]

The following example will change the speed of the turtle
smoothly; either accelerating or decelerating it:

1 : b u i l d 'change.speed

change.speed 's
branch :s = speed [stop]

case :s>speed [setspeed speed +1]
case :s< speed Csetspeed speed—1]

change.speed :s

1: cs
1: tell 1
1 : change.speed 40

Associated Primitive

setspeed

Reference.170

RM Logo

(

sqt number
(

Remarks
(

Returns the square root of number.

/ Examples

1 : p r i n t sqt 16
(4

1 : p r i n t sqt 169

(1 3

1 : p r i n t sqt 5
2.23606797749979

(

(

(

(

(

(

(

Reference.171

RM Logo

stamp

Remarks

Prints a copy of the current turtle shape onto the
graphics screen at the turtle's current position. The
copy will have the current turtle's body colour.

Examples

The following example stamps a ring of turtle shapes
around the centre of the drawing position.

N
1: bu i ld 'stamp.cireLe

stamp.circle)
cs
lift
fd 90
It 90
repeat 36 Cfd 10 It 10 stamp]
drop

1: s tamp.c i rc le

This example draws a row of parked cars.

1: cs
1 : t eL l 1
1 : setshape 'car
1: setx -100
1: l i f t
1 : repeat 6 [stamp r t 90 fd 30 I t 90

setc pick 15]

Reference.172

RM Logo

stop

Remarks

Logo stops executing the procedure in which s top occurs
and either continues running the procedure which called it
or returns to the prompt 1: .

Example

The following procedure draws a 'spiral square', stopping
when the side of length 90 steps:

1 : bu iLd ' s p i r a l . s q u a r e

spiral.square 'side
if :side > 90 Estop]
fd :side
Lt 90
spiraL.square :side +5

1: spiraL.square 7

Associated Primitives

end , escape

Reference.173

RM Logo

subtract numberl numberl
sub

Remarks

Returns the result of subtracting numberl from numberl.

The infix symbol - can be used between numberl and
numberl.

Examples

1: p r i n t 7 —5
2
1 : p r i n t subtract 5 7
- 2
1: p r i n t 5 5
10

Associated Primitives

add, d i v i d e , m u l t i p l y , power

Reference.174

(

(

(

(

(

(

(

(

(

(

RM Logo

tan angle

Remarks

Returns the tangent of angle when angle is specified in
degrees.

Example

1 : p r i n t tan 45
1

Associated Primitives

cos, s in

Reference.175

RM Logo

tell nwl

Remarks

Tells Logo which turtles you want it to 'talk' to. If a
turtle with the given number or name does not exist then
it will be created. Up to eight turtles can exist at any
time.

If you create an even number of turtles in the same
colour, and the same position you cannot see the turtles.
This is because they are drawn on screen in exclusive
OR mode.

The special case t e L L LI means that the invoking
process ceases to address any turtles.

Following a change into graphics mode after text mode, one
turtle is present on screen.lt is turtle number 1, also
known as seymour.

Examples

1: t e l l 2

1: t e l l ' e r i c

1: t e l l C1 2 3]

Associated Primitives

told, toldq, turtles, vanish

Reference.176

http://screen.lt

RM Logo

text word

Remarks

Returns the definition of a procedure as a list.

The text returned on the screen is in the same form as the
input to de f ine .

(Example

1: print text 'house
[[house] [square] [It 60] [triangle]

[rt60] [back 100]]

Associated Primitives

define, po

Reference.177

RM Logo
)

textscreen
ts

Remarks

Allows the whole screen to be used for text.

Associated Primitive

clearscreen

|

J

!

]

3
\

Reference.17 8

)

RM Logo

throw word

Remarks

Used with the catch primitive. See Chapters 5 and 12 for
fuller explanations of both throw and ca tch .

Associated Primitive

/ catch

(

(

(

(

(

(

(

Reference.179

(

RM Logo

titles

Remarks

Returns a list of all the procedures in memory except
those which are buried.

Example

1: say t i t l e s

square t r i a n g l e hexagon

Associated Primitive

po)

-

Reference.180

)

RM Logo

(

told
(

Remarks

Returns the names or numbers of any turtles that the
current process is 'talking' to.

If a turtle has a name, to Ld will return it, otherwise it
returns the number.

(Examples

1: tell 'Sidney
1: print told
Csidney]

; eric still exists but
; this process is not talking
; to him.

1: t e l l Leric Sidney]
1: p r i n t t o ld
Eerie Sidney]

Associated Primitives

t e l l , t u r t l e s , vanish

(

(

(

Reference.181

(

RM Logo
i

touch

Remarks

Returns the colour of the background directly beneath the
pen of the first turtle created.

Examples

1 : cs
1 : say touch
0
1 : fo rward 5
1 : say touch
15

Associated Primitives

s e t p o i n t , p o i n t

)

)

J

Reference. 182

(

(

(

<

RM Logo

towards list

Remarks

Returns a list of two numbers.

(list represents a point on screen as a coordinate pair.

The first number is the distance in steps towards the point
list. The second is the clockwise direction in degrees
from the turtle's heading to the point list.

Examples

1: cs
1: print towards [20 0]
[20 90]

To move the turtle to the point [20 0] type

1: seth Last towards [20 0]
1 : forward f i r s t towards L~20 0]
1 : p r i n t pos
[20 01

(

(

(

(

(

Reference.183

RM Logo

trace wl

Remarks

Tells Logo to give a message every time the procedures
named by wl are called.

The message ends ? and waits for you to press:

• <ENTER> to continue

• <ESC>tos top

• <F10> key to stop tracing but resume processing.

See Chapter 12 for a more detailed description.

Examples

1: trace 'explore

1: trace [explore report]

Associated Primitives

bug, unbug, untrace, walk, unwalk

Reference.184

RM Logo

turtles

Remarks

Checks which turtles have been created and returns their
names and numbers in the form of a list.

Examples

1: p r i n t t u r t l e s
[1 2 3 4]

One useful trick to get rid of all the turtles is

1 : t e l l t u r t l e s vanish

Associated Primitives

t e l l , t o l d , vanish

Reference.185

RM Logo

type nwl

Remarks

This gives the same output as say, except that it is not
followed by a carriage return.

Lists are printed without their outermost brackets and
with no spaces before punctuation marks.

type is useful for sending escape sequences or for
multiple output on a single line.

Examples

1 : make ' x 42
1 : make ' y 43
1 : type Cx = \20] type :x type [\20and y = \ 2 0 J

type :y type '\0a type "\0d

x = 42 and y = 43

Reference.186

file:///20and

RM Logo

unbload wl

Remarks

Removes the Logo extensions that were loaded from the
file(s) named in wl.

Example

1 : unbLoad ' s t u f f . L g x

removes the extensions that were loaded from the file
s t u f f . L g x .

Associated Primitives

bLoad, bLoaded

Reference.187

RM Logo
)

unbug wl

Remarks

Cancels the effect of bug. The named variable need not
exist.

Examples

1:unbug 'x

1:unbug Cx y]

Associated Primitives

bug, t r a c e , u n t r a c e , unwalk , walk ,

!

Reference.! 8 8

RM Logo

unequalq nwll nwll
ueq

Remarks

Returns the value ' t rue if nwll and nwll are unequal,
and ' f a Lse if they are equal.

• Two numbers are considered equal if they differ by
1/2000000 or less.

• Words are considered unequal unless they contain the
'same order of letters, irrespective of case.

• Lists are unequal unless their elements are equal and
in the same order.

Example

1 : un less :x ueq 10 Csay [someth ing i s wrong]]

Associated Primitives

equaLq, g r e a t e r e q u a l q , LessequaLq

Reference.189

RM Logo

unless a list

Reference.190

Remarks

Executes list unless the expression a is ' t rue.

This primitive is equivalent to: i

if not a list

Example

unless rnumber > 0 [e r ro r .hand le r]

Associated Primitives
I

do, i f , whi Le

)

)

)

RM Logo

unmake wl

Remarks

If the input is a word, the variable named by the word is
erased.

If the input is a list, each variable named in the list is
erased.

unma ke made will remove all variables.

You will get an error if you try to unma ke a
non-existent variable.

Examples

1: unmake 'x

1: unmake Cx y z]

Associated Primitives

made, make

Reference.191

RM Logo

untrace wl

Remarks

Cancels the effect of t ra ce on the procedures named by
wl. You cannot unt race the procedures named by wl
unless they exist.

Examples

1: untrace 'explore

1: untrace CexpLore repor t]

Associated Primitive

t r a c e

Reference.192

RM Logo

unwalk wl

Remarks

Cancels the effect of wa Lk for the procedures named by
wl. You cannot unwa L k procedures that do not exist.

Examples

1 : unwaLk 'expLore

1: unwaLk [square t r iangLe]

Associated Primitive

walk

Reference.193

RM Logo

uppercase nwl

Remarks

Converts every alphabetic character of nwl into a
capital letter and returns the changed nwl.

Example

1: say uppercase [LOGO system]
LOGO SYSTEM

Associated Primitive

Lowercase

Reference.194

)

»

RM Logo

(

upq
(

Remarks

Returns ' t rue if the turtle's pen is up and ' f a l se
if it is down.

Associated Primitives

drop, l i f t

o

<

(

o
(

(

(

Reference.195
f v

RM Logo

value word

Remarks

Returns the value associated with the name word, va Lue
has the same effect as putting a colon (:) before a name:
it returns the contents. Unlike the colon, it can be
recursive.

Examples

1 : make ' x 12
1 : say va lue ' x
12

1 : say :x
12

1 : bui Ld 'decrement

decrement 'v.name
make :v.name (va lue :v.name)—1

1 : make ' x 42
1 : p r i n t :x
42
1 : decrement ' x
1 : p r i n t :x
41

Associated Primitive

va lueq

Reference.19 6

RM Logo

(

valueq word
(

Remarks

Returns ' t rue if word is the name of a variable,
otherwise it returns " f a l s e .

Associated Primitive

J va lue

<

<

<

C
(

(

o
(

Reference.197

RM Logo

vanish

Remarks

Turtles controlled by the process disappear. They are no
longer maintained by Logo.

Associated Primitives

t e l l , t o l d , t o l d q , t u r t l e s

)

)

)

)

)

>

Reference.198

)

RM Logo

walk wl

Remarks

When any of the procedures named by wl are called, Logo
prints each line before executing it and waits for you to
press a key before continuing. This is useful in
debugging.

The keys you can press, and their significance, are
described in Chapter 12.

The procedures must exist when you give the command
walk.

Examples

1 : walk ' e x p l o r e

1 : walk [square c i r c l e]

Associated Primitive

unwalk

Reference.199

RM Logo

whenever a list

Remarks

whenever is intended for parallel processing. The
expression a is evaluated continuously and, when it
becomes t r u e , Logo executes the command list.

Logo waits for a to become t r u e again before running
list again.

Example

whenever :x = 0 [make 'x 100D

Associated Primitive

awai t

>

)

Reference.200

)

)

RM Logo

while a list

Remarks

As long as the expression a is " t rue , the command list
is repeatedly executed.

whi le is similar to do unt i I except that while
may never execute the command list, but do u n t i l
always executes it at least once.

Example

1 : make 'number 12
1 : w h i l e :number > 0 [p r i n t inumber

make inumber inumber —1]

Associated Primitives

do, i f , unless

Reference.201

RM Logo

wordq nwl

Remarks

Returns ' t r u e iinwlis a word and ' f a l s e
otherwise.

Examples

The following procedure tests if its input is a word:

1: bui Id 'checkword

checkword 'object

if wordq :object Csay 'word] Csay Cnot wo

1: make 'iteml 'patsy
1: checkword :item1
word

1: make 'item2 C1 2 3 4]
1: checkword : item2
not word

1: checkword 3
not word

Reference.202

RM Logo

wrap

Remarks

Makes the turtle wrap around the screen.

If it is sent off the right hand edge of its field, it
reappears on the left; if it is sent off the top, it
reappears at the bottom. The turtle's drawing heading
always remains unchanged.

Examples

1 : cs
1 : wrap
1 : Lef t 45
1 : fo rward 1000

Associated Primitives

f e n c e , f e n c e q , nowrap, wrapq

Reference. 203

RM Logo

wrapq

Remarks

Returns ' t rue if the wrap primitive has been used,
otherwise it returns ' f a l s e .

Associated Primitives

f e n c e , f e n c e q , nowrap

Reference.204

RM Logo

writefilec nw filename
wfc

Remarks

Writes the first character of nw to the named file,
which must have been opened for output.

The character is joined with the previous character
output.

wfc returns ' t rue if the character is successfully
written and ' f a Lse otherwise.

Example

1: unless w r i t e f i l e c "b 'my f i l e .da t
Csay [not wri t t e n]]

Associated Primitives

c l o s e f i l e , o u t f i l e , o u t f i l e s ,
w r i t e f i l e d , w r i t e f i l e l

Reference.205

RM Logo

writefiled nwl filename
wfd

Remarks

Writes nwl to the named file, which must already be open
for output. The data is written in the format used by
print .

) ' t rue is returned if the data is successfully written

and ' f a l s e otherwise.

Example

1 : unless w r i t e f i l e d 'rhubarb 'myfiLe.dat \
Csay [not w r i t t e n]]

Associated Primitives

c l o s e f i l e , o u t f i L e , o u t f i l e s ,
w r i t e f i l e c , w r i t e f i l e l

Reference. 206

,!

RM Logo

writefilel list filename
wfl

Remarks

Writes list to the named file, which must already be open
for output. The data is written in the format used by
say and is followed by a carriage return.

The value ' t rue is returned if list is successfully
written, and ' f a l s e otherwise.

Example

1: unless w r i t e f i l e l [rhubarb] 'my f i le .da t
[say [not w r i t t e n]]

Associated Primitives

c l o s e f i l e , o u t f i l e , o u t f i l e s ,
w r i t e f i l e c , w r i t e f i l e d

Reference.207

RM Logo

xcor

Remarks

Returns the

Examples

1:
1 :
0

1:
1 :
10C

cs
p r i n t

setpos
p r i n t

)

turtle's current x coordinate

xcor

; [100
xcor

50]

Associated Primitives

pos, setpos, se tx , sety , ycor

)

)

)

)

)

Reference.208

RM Logo

xor a b

Remarks

Stands for exclusive or. Returns ' t rue if either a or
b is true and the other false; otherwise it returns
' f a l s e . The table below shows xor working with a and
lvalues:

a
'false
'false
1 true
'true

Example

This procedure acts like a simple two-way light switch.

1 : bu i l d ' l i g h t s

lights 's1 's2

result if xor (:s1 = 'up) not (:s2 = 'up)
[[lights on]] [[lights of f]]

If both switches are up or down then the lights are off.
If they are in different positions the lights are on.

1 : say l i g h t s 'up 'up
L igh ts o f f
1 : say l i g h t s 'up 'down
L igh ts on

Associated Primitives

b
'false
'true
'false
'true

xor ab
'false
' true
'true
'false

both, either, not

Reference.209

RM Logo

)

ycor
)

Remarks

Returns the turtle's current y coordinate.

Examples

1: cs
1: p r i n t ycor
0

1 : setpos [100 50]
1 : p r i n t ycor
150

Associated Primitives

pos, setpos, se tx , se ty , xcor

J

)

)

I

)

)

Reference. 210

)

)

)

)

)

)

)

RM Logo

list # number

Remarks

Returns the number th element of list.

can also be used after make to change the value
of an element of a list.

Examples

1 : make ' n o t i c e [NO SMOKING]
1 : say : n o t i c e # 2
SMOKING
1 : say : n o t i c e # 1
NO

1 : make ' n o t i c e # 2 ' e a t i n g
1 : say : n o t i c e
NO e a t i n g

The following example uses # recursively to handle
simple structured data.

1 : make 'marks [[Maths 8] [Chemis t ry 5]
[E n g l i s h 7]]

1 : p r i n t :marks #3 #2
7

Reference.211

RM Logo

)

Logo Keywords

Logo recognises special words which are not primitives.
J

These keywords are:

)
case
default
These are part of the branch primitive.

unt i I
This is part of the do...unt i I primitive.

1 t r u e
' f a l s e j
These are the boolean data types recognised by Logo.

Logo Signals

i
The Logo system throws signals which you need to catch
within your program otherwise your program may come to a
stop.

The system signals are:

c a n c e l , end f i l e , e r r o r , f e n c e , t o u c h ,
t o u c h t u r t l e , escape

and can be caught in your program using ca tch . For
example:

catch ' e n d f i l e Csay r f c 'my f i l e]

More information on the system signals can be found in
chapters 5 and 12.

Reference.212

I

RM Logo

Special Logo Characters

Logo recognises various characters as having a special
effect. Their uses are detailed in the associated
primitive descriptions. The characters are:

: colon
Precedes a variable name and returns its contents.

; semi-colon
Precedes a comment which is not part of the program.

: - tag
Receives control from a goto command. See go to .

C] square brackets
The contents inside the brackets are a list.

1 quote mark
Indicates that what follows is either a name or a
word.

() round brackets
Ensures a specific order of evaluation.

\ backslash
The subsequent character is to be treated as an
ordinary text character or a hexadecimal value.

* asterisk
For multiplication. See mu l t i p ly .

+ plus
For addition. See add and j o i n .

minus
For subtraction. See s u b t r a c t .

Reference.213

RM Logo

I slash
For division. Seedi v ide and sha re .

I vertical bar
ei t h e r andxor.

t up arrow
For exponentiation. See power.

~ tilde
Symbol for 'not'. See not and unequa Lq.

$ dollar
Specifies Logo's definition of the following name or
word is to be used. See chapter 15.

hash
Counts the elements in a list. See the # primitive
which is the last primitive described.

= equals
Tests for equality.

< less than
Tests for one value being less than another.

> greater than
Tests for one value being greater than another.

< - greater than dash
Gives contents to a variable. See the make.

% percentage
Returns the remainder of a division. See remai nder

& ampersand
Joins expressions, words and lists. See both and
sen tence .

)

)

)

)

)

)

)

)

Reference. 214

Index
Index

I

(

(

(

(

1
J

)

#, list pointer 9.5
$ 15.3
1 : prompt 1.4

Absolute graphics 2.8
alias 3.4
amongq 9.5
and 1.11,5.2
Arctangent 8.2
Arithmetic 1.14
Arithmetic operators 1.14,8.2
asserted 10.2
assertions 10.2
atan 8.2
await 13.5

Backslash, use 1.15
backward 2.2
begin 13.3
bg 2.6
bload 16.3
Border colour 2.5
branch.. .case 4.6
bug 12.8
build 1.7,4.1
butfirst 9.1,9.4
but last 9.1,9.4

catch 5.9,12.3
Characters

lowercase 1.12
punctuation 1.13
uppercase 1.12

c l a s s i f i e d 10.4
clean 2.2
c leantext 2.2
clearscreen 1.6
Closing files 11.2
Colon (dots), use 1.15,3.3
colour 2.6
Colour names 2.7
Colour numbers 2.6
co lours . Igp 2.7
Comments in Logo 1.16
Conditionals 5.3
consult 6.3
Control, flow of 5.1
copy 12.4, 15.5
cos 8.2
Cosine 8.2
count 9.6
cursor 7.2

Database
building a simple one 10.3
building sophisticated 10.6
inferring values 10.10
retrieving information 10.4

Debugging programs 12.3
de f ine 3.5
defineshape 2.4
Demonstration files .1.5
deny 10.2
Destructive overdrawing 2.7
Directing the turtle 2.2
d i r e c t o r y 6.4
Disk directory 6.4
Disk problems
Disks and files

introduction
d o . . . u n t i I
d o . . . w h i l e

11.4,11.12

11.1
5.4
5.4

Dots (colon) 1.15,3.3
d r i b b l e 6.3
Driver 16.1,16.4
drop 2.2
dump 12.9

Edit mode
entering 1.7,1.9
leaving 1.9

Edit window 1.8
Editing

a list 4.5
leaving an edit 4.5
with function keys 4.2
with numeric keys 4.3

Editing and making errors 4.E
ed i t l i s t 9.6
Editor 4.1
Editor use out of Logo 15.6
e d l i s t 4.5,9.6
Empty word 9.2
emptyq 9.6
erasef i le 6.4
Error Handling 12.1
esh.def 2.5
e x i t 1.5
explode 9.6
Extension files

error exit 16.8
format 16.6
preparing to write 16.3
reading inputs 16.7
returning lists 16.8
returning results 16.8

Extensions to Logo 16.1

Index

fence 2.2
Files

changing data 11.6
closing 11.2
creating a simple one 11.3
deleting 6.4
disks, introduction 11.1
loading 1.5
names 11.10
news 15.4
opening 11.2
reading items 11.2.11.5
renaming 6.4
temporary 11.10
unsuccessful writing to 11.4
writing items 11.2

f i n d 15.5
f i r s t 9.1,9.4
Floor turtle driver

preparing to write 16.3
writing your own 16.4

Floor turtles 16.1
Flow of control 5.1
forever 5.2
forward 2.2
f rac 8.3

get 15.5
goodbye 1.5
goto 5.5
Graphics 2.1

Absolute 2.8
area on screen 2.2
mode 1.4
turtle 2.2

i f 5.3
implode 9.6
Infix operators 1.14,8.2
Input and Output 7.1
Input from the Keyboard 7.3
Inputs

to a primitive 1.7
to a procedure 3.2

i nt 8.3

j o i n , ++ 9.2

keep 15.5
key 7.3
Keyboard mistakes 12.1
keyq 7.3

l i s t f i l e . d e f 11.9
Lists 1.11

elements 1.12,9.3
of procedures 3.5

load 1.5,15.5
Loading

files 1.5
ready-made extensions 16.3
turtle driver 16.2

Logo
leaving 1.5
leaving a procedure 1.5
Primitives 1.6
procedures 1.7
starting up 1.3

Logo editor 4.1
Logo extensions 16.1

writing your own 16.5
Logo files

loading 1.5
maintenance 6.4
running 1.5
saving 1.6,15.5

Logo graphics 2.1
Logo Microworld 1.16

preserving 15.4
setting up 15.1
standard 15.5

Logo prompt 1.4,13.1
Logo signals

' e r r o r 5.10
' fence 5.10

Long lines of Logo 4.6
Lower case characters 1.12

make 1.13
memberq 9.5
Microworld 1.16,15.1

preserving 15.4
setting up 15.1

Moving Pictures 14.4
Multiple turtles 14.1

example 14.4

Names 1.12
Negative numbers 8.1
Newsfile 15.4
news.lgo 15.4
Non-destructive overdrawing 2.7
Numbers 1.14,8.1

positive and negative 8.1
precision 8.1
random 8.3

)

)

)

)

)

label 7.2
las t 9.1,9.4
Leaving an edit 4.5
I i f t 2.2
List pointer (#) 9.5

ob jec ts 10.2
Opening files 11.2
Operators, arithmetic 1.14, 8.2

(

(:

<

(;

()

paraL le l 13.2
Parallel processing

example 13.8
mutual exclusion
synchronization

Parentheses 1.15
pc 2.6
pennormal 2.8
penreverse 2.7
pick 8.3
po 6.1
Pointers in lists (#)
pos 15.5
Positive numbers

13.1

13.3
13.4

9.5

8.1

(

Prefix operators 1.14,8.2
Primitives 1.6

abbreviations 1.10
inputs 1.7

p r i n t 7.1
Printing on screen 7.1
Procedures 1.7,3.1

as lists 3.5
building 3.1
inputs 3.2
leaving a running procedure 1.5
listing those available 3.1
renaming 3.4
returning results 3.3
scrapping 3.1

Properties 10.1
examining values 10.2

Punctuation characters 1.13
put f i r s t , +> 9.4
put l a s t , <+ 9.4

Quotation mark in Logo 1.12,1.15

random 8.3
Random numbers 8.3
readf i tec 11.9
readf i ted 11.6
reading from files 11.2
Recursion 5.5
rename 3.4
renamefi le 6.4
Renaming files 6.4
Renaming procedures 3.4
repeat 5.2
Repeat last line of input 12.2
Repetition 5.2
replay 6.3
Replaying command sequences 6.3
rest 9.1
Results from procedures 3.3
RM Logo

demonstration files 1.5
Disk 1.2
Files 1.2

RM Logo Editor 4.1
Round brackets 1.15

Index

save 6.2,15.5
Saving work on disk 6.2
say 7.1
scrap 3.1,6.2
setbg 2.6
setc 2.6
setcursor 7.2
setdir 2.3
setpc 2.6
setpoint 2.8
setpos 2.8
setshape 2.5
setspeed 2.3
setx 2.8
sety 2.8
Simple input and output 7.1
Simultaneous drawing of shapes 14.3
s in 8.2
Sine 8.2
s ing le 13.4
Spaces in Logo names 1.13
Special characters 1.14
Square brackets 1.15
Start-up (standard) 15.5
s t a r t . Igc 15.5
Starting up

Network Nimbus 1.3
Standalone Nimbus 1.3

Symbolic dumps 12.9

Tag 5.5
tan 8.2
Tangent 8.2
t e l l 14.2
Temporary files 11.10
t e x t 3.5,6.2
textscreen 1.6
throw 5.9,12.3
Throwing and catching control 5.9
t i t l e s 3.1,6.1
t o l dq 15.5
t race 12.6
Turtle

changing shape 2.4
drawing heading 2.2
floor 16.1
more than one on screen 14.1
movement and speed 2.3
movement heading 2.3
shape 1.4,2.4,2.8

Turtle driver 16.1
loading a ready-made 16.2
preparing to write 16.3
writing your own 16.4

Turtle graphics 2.2
type 7.2

unbload 16.3
unbug 12.9
untrace 12.6
unwatk 12.6
Upper case characters 1.12

Index

value 1.13
Values 10.1

examining 10.2
vanish 14.2

Words 1.11,9.1
Workspace 6.1

manipulating contents 6.1
Writing to files 11.2

walk 12.5
Word, empty 9.2 XOR plotting 2.7

)

Mill Street, Oxford OX2 OBW Telephone (0865) 791234

	Front Cover
	Errata
	Title
	Preface
	Contents
	Part 1 : Concepts
	1: Getting Started
	2: Graphics
	3: More On Procedures
	4: Using the Editor
	5: Changing the Flow of Control
	6: Managing Your Workspace
	7: Simple Input/Output
	8: Arithmetic
	9: Words And Lists
	10: Organising Information
	11: File Handling
	12: Error Handling and Debugging
	13: Parallel Processing
	14: Using Multiple Turtles
	15: Setting Up A Logo Microworld
	16: Writing Extensions To Logo

	Part 2 : Reference
	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k
	l
	m
	n
	o
	p
	r
	s
	t
	u
	v
	w
	x
	y
	#
	Logo Keywords etc

	Index
	Back Cover

